在紫杉醇这种微管稳定剂存在时通过组装的方法分离微管
实验材料组织匀浆试剂、试剂盒PME 缓冲液仪器、耗材匀浆器实验步骤1. 对感兴趣的组织匀浆,每克组织加 1 ml PME 缓冲液。PME 缓冲液:0.1 mol/L PIPES,pH 6.92 mmol/L EGTA1 mmol/L MgSO41 mmol/L DTT ( 或 DTE)0.5 mmol/L GTP2. 匀浆物以 150000 g 离心 60 分钟。3. 小心地转移上清,避兔任何污染颗粒,它们可能来自于沉淀块或可能发现于沉淀块上方的松的小碎片聚集物。4. 测量上清的体积,调整紫杉醇浓度到 20 μmol/L。5. 在 37℃ 孵育 15~20 分钟。6. 于 37℃ 小心地在溶液下铺几毫升含 10% 蔗糖和 10 μmol/L 紫杉醇的 PME 缓冲液。7. 在 25℃ 以 45000 g 离心 30 分钟收集组装了的微管。8. 去掉上清,用温的 PME 缓冲液小心地冲洗离心管壁,小心不要打碎微管沉淀物。9. 用少......阅读全文
关于微管蛋白的功能介绍
α-和β-微管蛋白聚合成动态微管,这些亚基是微酸性的,等电点在5.2和5.8之间。在真核生物中,微管是细胞骨架的主要成分之一,并且在许多过程中起作用,包括结构支持,细胞内转运和DNA分离。 为了形成微管,α-和β-微管蛋白的二聚体与GTP结合并在GTP结合状态下组装到微管的(+)末端。β-微管
对基于微管的运动蛋白进行性质鉴定实验1
通过乳胶珠沿微管的移动来观察基于微管的运动蛋白活性实验材料微管试剂、试剂盒聚赖氨酸溶液仪器、耗材盖玻片实验步骤1. 准备该显微检测所需的盖玻片:(1) 盖玻片在 200 μg/ml 聚赖氨酸溶液中室温过夜。(2) 玻片在盛有 15 ml 蒸馏水的培养皿中翻转洗涤 4 次,每次 10 分钟。(3) 洗
对基于微管的运动蛋白进行性质鉴定实验
通过微管滑行来观察基于微管的运动蛋白活性实验材料微管试剂、试剂盒PME 缓冲液仪器、耗材培养皿实验步骤1. 在一个培养皿里堆一些潮湿的滤纸片,放一块盖玻片到上面。加 50 μl 含运动蛋白的溶液到盖玻片的表面并涂开。盖上盖子在室温放 5~10 分钟,使蛋白黏附在玻璃上。2. 转移盖玻片,用室温的含
对基于微管的运动蛋白进行性质鉴定实验
通过乳胶珠沿微管的移动来观察基于微管的运动蛋白活性通过微管滑行来观察基于微管的运动蛋白活性实验材料微管 试剂、试剂盒聚赖氨酸溶液
对基于微管的运动蛋白进行性质鉴定实验
通过乳胶珠沿微管的移动来观察基于微管的运动蛋白活性 通过微管滑行来观察基于微管的运动蛋白活性 实验材料 微管
对基于微管的运动蛋白进行性质鉴定实验
实验材料 微管试剂、试剂盒 聚赖氨酸溶液仪器、耗材 盖玻片实验步骤 1. 准备该显微检测所需的盖玻片:(1) 盖玻片在 200 μg/ml 聚赖氨酸溶液中室温过夜。(2) 玻片在盛有 15 ml 蒸馏水的培养皿中翻转洗涤 4 次,每次 10 分钟。(3) 洗过的盖玻片风干并存放在无灰尘的容器中直到使
Nature:“自动”的人工微管系统
生物学家们用活细胞内的基础物质,创建了能够自发运动的仿生系统。该文章发表在十月七日的Nature杂志上。 微管是活细胞中的多聚物细丝,负责引导驱动蛋白kinesin,而驱动蛋白是以ATP为能量沿微管推进的“马达蛋白”。研究人员打造了一个由微管组成的凝胶,领导该研究的Brandeis大学物理
γ微管蛋白的相关内容
γ-微管蛋白,微管蛋白家族的另一成员,在微管的成核和极性取向中是重要的。它主要存在于中心体和纺锤极体中,因为它们是最丰富的微管成核区域。在这些细胞器中,在称为γ-微管蛋白环复合物(γ-TuRCs)的复合物中发现了几种γ-微管蛋白和其他蛋白质分子,其在化学上模拟微管的(+)末端,从而允许微管结合。
细菌微管的基本内容介绍
在Prosthecobacter属细菌中鉴定了α-和β-微管蛋白的同系物。它们被命名为BtubA和BtubB,以将它们鉴定为细菌微管蛋白。两者都表现出与α-和β-微管蛋白的同源性。虽然结构上与真核生物微管蛋白高度相似,但它们具有几个独特的特征,包括伴侣免疫折叠和弱二聚化。电子低温显微镜表明Btu
微管蛋白的基本内容介绍
tubulin组成微管的蛋白质称为微管蛋白。微管蛋白是球形分子,有两种类型:α微管蛋白(α-tubulin)和β微管蛋白(β-tubulin)。这两种亚基有35~40%的氨基酸序列同源,表明编码它们的基因可能是由同一原始祖先演变而来。另外,这两种微管蛋白与细菌中一种叫作FtsZ的GTPase(分
关于微管结合蛋白的分类介绍
蛋白与微管密切相关,附着于微管多聚体上,参与微管的组装并增加微管的稳定性,这些蛋白叫做微管结合蛋白microtubule associated protein MAP。 定义:与微管特异地结合在一起, 对微管的功能起辅助作用的蛋白质称为微管结合蛋白, 在微管结构中约占10~15%。 MAPs
微管蛋白的结构类型和作用
微管的蛋白质称为微管蛋白。微管蛋白是球形分子,有两种类型:α微管蛋白(α-tubulin)和β微管蛋白(β-tubulin),这两种微管蛋白约占微管蛋白总量的80%~95%,具有相似的三维结构,能够紧密地结合成二聚体,作为微管组装的亚基。α亚基由450个氨基酸组成,β亚基是由455个氨基酸组成,它们
关于微管结合蛋白的功能介绍
①使微管相互交联形成束状结构,也可以使微管同其它细胞结构交联。 ②通过与微管成核点的作用促进微管的聚合。 ③在细胞内沿微管转运囊泡和颗粒,因为一些分子马达能够同微管结合转运细胞的物质。 ④提高微管的稳定性∶由于MAPs同微管壁的结合,自然就改变了微管组装和解聚的动力学。MAPs同微管的结合
-PNAS:将大肠杆菌转变为制药工厂
紫杉醇是世界知名的抗癌药,已被证明从20世纪70年代起就对多种癌症具有显著疗效。它是一种来自于紫杉树树皮的天然物质,正因为如此,它的分子结构非常复杂,它的作用机制同样如此:在1977年,有研究表明,紫杉醇可以结合到细胞的微管组装中,并稳定微管,这防止收缩,并防止伴随细胞分裂减慢发生的染色体分离。
Science:哺乳动物卵母细胞中的非中心体纺锤体组装机制
哺乳动物胚胎经常异常发育,从而导致流产和遗传性疾病,如唐氏综合症。胚胎发育异常的主要原因是卵子减数分裂过程中的染色体分离错误。与体细胞和雄性生殖细胞不同的是,卵子通过一种缺乏中心体的特化微管纺锤体分离染色体。典型的中心体由一对被中心粒周围材料包围的中心粒组成,并且是中心体纺锤体(centroso
剑指癌中之王-:-一种新型微管靶向药物
胰腺癌有一层很厚的结缔组织,阻碍了化疗药物进入肿瘤,也是胰腺癌是最难治癌症的原因之一。PCT596是一种小分子化合物,可抑制微管蛋白聚合。近日,哥伦比亚大学的研究团队通过多种临床前研究模型,发现PTC596可很好的递送到胰腺肿瘤组织,而且具有很好的耐受性,尤其是与一些一线疗法联合治疗有显著的疗
参与细胞移动微管--信号分子介绍
微管是另一种具有极性的细胞骨架。它是由13 条原纤维(protofilament)构成的中空管状结构,直径22—25nm。每一条原纤维由微管蛋白二聚体线性排列而成。微管蛋白二聚体由结构相似的α和β球蛋白构成,两种亚基均可结合GTP,α球蛋白结合的GTP 从不发生水解或交换,是α球蛋白的固有组成部分,
拟南芥微管结合蛋白CSI1
3月16日,植物科学研究权威期刊Plant Cell在线发表了中科院上海生命科学研究院植生生态所植物分子遗传国家重点实验室薛红卫研究组的最新研究成果:拟南芥ARCP蛋白CSI1通过结合微管,维持微管稳定性并调控根和花药的发育。 微管是由α、β微管蛋白异二聚体通过非共价键形成的管
钙调蛋白调节微管解聚简介
微管的组装需要微管结合蛋白和 Tau因子的共同作用,由于依赖于钙调蛋白激酶的底物而彻底被磷酸化,导致微管解聚。当体系中存在一定的 Ca2+的时候,钙调蛋白就会与微管 Tau 因子竞争结合,微管的聚合就会被抑制,细胞的生理活动恢复正常。利用显微注射法注入钙调蛋白,可以有效的延长有丝分裂中期持续的时
α微管蛋白:新的药物结合位点
微管(Microtubule)是抗肿瘤药物研发的重要靶点。微管是“细胞的骨架”主要成分之一,在许多细胞重要事件中起着关键作用。微管是由α-和β-微管蛋白(Tubulin)异二聚体可逆地组装成而成的线性管装结构(图1)。 图1:微管蛋白已知的六个结合位点及微管蛋白组装形成微管示意图 目前,微管
上海生科院发现蛋白质通过相变促进有丝分裂纺锤体形成
9月17日,Cell(《细胞》)杂志在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所朱学良研究组和美国华盛顿卡内基研究所郑诣先研究组的合作论文Phase Transitions of Spindle-Associated Protein Regulate Spindle Appa
Sci-Rep:揭秘新基因功能及癌症疗法靶点
弗吉尼亚联邦大学医学院的研究人员最新发现,精子相关抗原6(SPAG6) 有了某些新的功能, 以前这种基因被认为只对纤毛的能动性有重要作用。该基因的缺陷与男性不育相关,尽管新的发现可能会对某些癌症的诊断和治疗有影响。 “精子抗原6调节成纤维细胞的生长、形态、迁移和纤毛发生。”该研究发表在11月
谭蔚泓院士团队揭示三阴性乳腺癌治疗新靶点——PRMT5
三阴性乳腺癌(TNBC)有着转移率高、预后差、患者生存率低等特征,是最凶险的乳腺癌亚型,其缺乏雌激素受体(ER)和孕激素受体(PR),以及人表皮生长因子受体2(HER2)这几个乳腺癌治疗靶点,也因此得名。 尽管大约30%的TNBC病例表现为HER2低表达并对抗HER2疗法有反应,但化疗仍然是标
Nature子刊:微管运输的薄弱环节
微管是由微管蛋白tubulin聚合而成的中空圆柱,微管系统不仅是维持细胞结构的重要骨架,也是分子运输的必要轨道。这一系统对于细胞的生长和分裂非常重要,人们已经在此基础上开发了一些抑制癌细胞的药物。 Warwick大学医学院的研究人员,在微管系统中发现了一个关键性的故障点,即接缝(seam)
Cell子刊:为微管掌舵的关键蛋白
宾夕法尼亚州立大学的科学家们发现,细胞中微小的马达蛋白,能够在神经细胞的分枝结构中,为微管指引正确的方向。微管相当于细胞中的高速公路,这项研究在活细胞中为人们展现了这一交通网络的组织形式。 “我们提出了微管组成交通网络的模型,”副教授Melissa Rolls说。“但由于活细胞的复杂性
微管蛋白的可溶性表达及纯化
1、将重组质粒(BL21-2ß2或Rossatta-2ß2)的表达菌37℃摇培过夜后,1:20扩配(约需1h15m);2、至OD600=0.5~0.7时(约1h15min~1h45min),在 15-(0.5-24,0.8-12);20-(0.5-12,0.8-8);28、25-(0.8-8)进行蛋
关于细胞骨架系统的微管结构介绍
细胞骨架系统的微管结构:为一细长中空而直的细管,长度不一,可达数微米,外径约25nm,内径12nm, 管壁厚4-5nm,中心是电子不透明的空腔。主要由α球蛋白和β球蛋白——微管球蛋白(tubulin)分别组成23条原丝,纵行螺旋排列而成,此外,还有一些起辅助作用的蛋白质存在。管外有时可见垂直伸出
KATANIN和CLASP在不同空间介导子叶微管对机械胁迫的响应
形态发生的复杂过程对构成单细胞和多细胞生物的细胞和组织的功能至关重要。在植物中,微管细胞骨架介导纤维素微原纤维的沉积,这些微原纤维是植物细胞壁的组成部分。细胞壁根据其力学特性发挥促进或阻碍生长的作用,它可以抵消巨大的膨压,从而影响细胞和组织的形态。表皮扁平细胞(PCs)发育过程中能够产生凸起的l
北大生科院最新PNAS文章
来自北京大学生命科学学院的研究人员独立完成了一项最新研究成果:Self-assembly and sorting of acentrosomal microtubules by TACC3 facilitate kinetochore capture during the mitotic s
研究揭示细胞如何组装它们的骨架
微管是细胞内的丝状结构,许多重要的过程中都需要微管,包括细胞分裂和细胞内运输。一个由海德堡大学科学家领导的研究小组最近发现了螺旋形的模块化微管是如何形成的,以及如何控制它们的形成。研究人员用最先进的低温电子显微镜(cryo-EM)观察到了这些现象。图片来源;Nature "从单个组件组装微管,