RNA干扰实验技术

实验概要本文介绍了RNA干扰的原理及基本实验方法,包括了siRNA的设计、siRNA的制备和siRNA的转染等方法,及RNA干扰实验中的注意事项。实验原理近年来的研究表明,将与mRNA对应的正义RNA和反义RNA组成的双链RNA(dsRNA)导入细胞,可以使mRNA发生特异性的降解,导致其相应的基因沉默。这种转录后基因沉默机制(post-transcriptional gene silencing, PTGS)被称为RNA干扰(RNAi)。通过生化和遗传学研究表明,RNA干扰包括起始阶段和效应阶段(inititation and effector steps)。在起始阶段,加入的小分子RNA被切割为21-23核苷酸长的小分子干扰RNA片段(small interfering RNAs, siRNAs)。证据表明;一个称为Dicer的酶,是RNase III家族中特异识别双链RNA的一员,它能以一种ATP依赖的方式......阅读全文

RNA干扰的作用机制

病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应,其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA(大约21~23 bp),即siRNA。siRNA在细胞内R

RNA干扰主体实验介绍

siRNA表达载体构建好后,即可进行RNA干扰主体实验。RNA干扰主体实验的重点在于:成功将siRNA表达载体导入目的细胞如果目的细胞的质粒转染效率较低(低于70%),则应采用腺病毒或慢病毒载体,利用病毒载体的高感染率、高表达特性,更好地开展RNA干扰主体实验。设置好分组和对照按照nature的标准

RNA干扰回复实验介绍

RNA干扰回复实验,主要是为了说明Off-target效应。Off-target效应Off-target effects(脱靶效应)最早由Dharmacon科学家Jackson和他的同事们提出(Fedorov,Y.,et al. "Off-targeting By siRNA Can Induce

RNA干扰技术的特点

1.高效性:Elbashir等在研究中发现分别为25 nmol/L与100 nmol/L的起始双链RNA产生的结果是一样的,只是高浓度起始的更有效些。将双链RNA浓度降低到1.5 nmol/L时产生的基因沉默效果变化不大,只有当浓度降低到0.05 nmol/L时,沉默的效果才消失。Holen等也证实

RNA干扰主体实验介绍

siRNA表达载体构建好后,即可进行RNA干扰主体实验。RNA干扰主体实验的重点在于:成功将siRNA表达载体导入目的细胞如果目的细胞的质粒转染效率较低(低于70%),则应采用腺病毒或慢病毒载体,利用病毒载体的高感染率、高表达特性,更好地开展RNA干扰主体实验。设置好分组和对照按照nature的标准

RNA干扰的作用机制

病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应,其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA(大约21~23 bp),即siRNA。siRNA在细胞内R

RNA干扰(RNA-interference,RNAi)基础知识(1)

Rnai最近由于RNA 干扰(RNA interference,RNA i)的发现使反义领域的研究增多。这种自然发生的现象最早是在秀丽线虫中发现的(1),是序列特异性地使转录后的基因沉默的有力机制。由于最近两年在 RNA i领域取得的进步,已经有许多这方面的综述发表(2-4)。RNA 干扰是

RNA干扰(RNA-interference,RNAi)基础知识(2)

1RNA i的发现RNA i是在研究秀丽新小杆线虫(C. elegans)反义RNA (antisenseRNA )的过程中发现的,由dsRNA 介导的同源RNA 降解过程。1995年,Guo等发现注射正义RNA (senseRNA )和反义RNA 均能有效并特异性地抑制秀丽新小杆线虫par

RNA干扰(RNA-interference,RNAi)基础知识(3)

SiRNASmall interfering RNA (siRNA):是一种小RNA分子(~21-25核苷酸),由Dicer(RNAase Ⅲ家族中对双链RNA具有特异性的酶)加工而成。SiRNA是siRISC的主要成员,激发与之互补的目标mRNA的沉默。ShRNAshRNA 短发夹RNAshRNA

RNA干扰技术的作用机制

病毒基因、人工转入基因、转座子等外源性基因随机整合到宿主细胞基因组内,并利用宿主细胞进行转录时,常产生一些dsRNA。宿主细胞对这些dsRNA迅即产生反应,其胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA(大约21~23 bp),即siRNA。siRNA在细胞内R

RNA干扰(RNAi)实验成功要素

基因和siRNA选择RNAi实验的通量可从沉默单个感兴趣的基因,到少量相关基因或同一个通路上的基因,到全基因组高通量筛选,取决于需要解决的生物学问题。siRNA的设计至关重要。转染优化用于RNAi实验的细胞应当有效转染siRNA。转染必须经过优化确保siRNA的浓度是最低的有效浓度以避免非特异性效应

RNA干扰实验技术介绍(一)

通过生化和遗传学研究表明,RNA干扰包括起始阶段和效应阶段(inititation and effector steps)。在起始阶段,加入的小分子RNA被切割为21-23核苷酸长的小分子干扰RNA片段(small interfering RNAs, siRNAs)。证据表明;一个称为Dic

RNA干扰实验技术介绍(二)

dsRNA消化法的主要优点在于可以跳过检测和筛选有效siRNA序列的步骤,为研究人员节省时间和金钱(注意:通常用RNAse III通常比用Dicer要便宜)。不过这种方法的缺点也很明显,就是有可能引发非特异的基因沉默,特别是同源或者是密切相关的基因。现在多数的研究显示 这种情况通常不会造成影

产生RNA干扰RANi-的方法

4 产生RANi 的方法产生RANi 的方法主要有体外合成和体内合成siRNA 法。将siRNA 导入细胞的方法又分为微量注射法、电穿孔法、浸泡法、工程菌喂养法、转基因法和病毒感染法等。Harborth 等[14 ]设计体外合成21nt siRNA 的方法是:在基因库中寻找靶向基因的mRNA 序列,

RNA干扰技术获得新突破

    来自一家名为“ALNYLAM”的生物技术公司的研究人员在11日出版的《自然》杂志上报告说,他们通过转基因技术在RNA(核糖核酸)干扰技术的研究上取得了突破,为治疗糖尿病、癌症等疾病带来了希望。    RNA干扰是一种由双链RNA诱发的“基因沉默”。在此过程中,致病细胞中与双链RNA有同源序列

RANi(RNA干扰)术语表

RNA干扰是最近发现的一种功能工具。当RNA导入一个细胞时,最终会引起细胞内互补mRNA的降解,从而导致基因功能活性的阻断。PTGS转录后基因沉默(posttranscriptionalgenesilencing);一种首先在植物中确定,然后发现在动物中也存在的现象。尽管PTGS最初被描述作一种病毒

RNAi(RNA干扰)的分子机制

通过生化和遗传学研究表明,RNA干扰包括起始阶段和效应阶段(inititation and effector steps)。在起始阶段,加入的小分子RNA被切割为21-23核苷酸长的小分子干扰RNA片段(small interfering RNAs, siRNAs)。证据表明;一个称为Dic

关于小干扰RNA的简介

  小干扰RNA(siRNA),有时称为短干扰RNA或沉默RNA,是一类双链RNA分子,长度为20-25个碱基对,类似于miRNA,并且在RNA干扰(RNAi)途径内操作。它干扰了表达与互补的核苷酸序列的特定基因的转录后降解的mRNA,从而防止翻译。  siRNA由双链RNA (double str

RNA干扰RNAi的生物特性

RNAi抑制转座子活性两方面的证据提示转座子活性的抑制与siRNA有关① 发现蠕虫mut-7 基因参与RNAi 并且与转座子的转座抑制有关;② 在果蝇中,参与RNAi 的RNA 解螺旋酶Spindle-E 的突变将导致该基因引起的基因沉默的缺失,同时提高了反转录转座子活性。RNAi抵御病毒感染在拟南

RNA干扰回复实验原理介绍

RNA干扰回复实验,主要是为了说明Off-target效应。Off-target效应Off-target effects(脱靶效应)最早由Dharmacon科学家Jackson和他的同事们提出(Fedorov,Y.,et al. "Off-targeting By siRNA Can Induce

RNA干扰相关知识Argonaute(AGO)

Argonaute(AGO):一类庞大的蛋白质家族,是组成RISCs复合物的主要成员。AGO蛋白质主要包含两个结构域:PAZ和PIWI两个结构域,但具体功能尚不清楚。研究表明,PAZ结构域结合到siRNA 的3’的二核苷酸突出端;一些AGO蛋白质的PIWI结构域赋予slicer以内切酶的活性。PAZ

RNA干扰相关知识Core-RISC

Core RISC:是介导目标mRNA切割过程或者翻译抑制的最小的RNA-蛋白质复合物。在人和果蝇身上发现的分子量少于200kDa的RISCs可能就是core RISC的重要代表。AGO蛋白质和Core RISC密切相关。

RNA干扰相关知识Dicer(DCR)

Dicer(DCR):是RNAase Ⅲ家族中的一员,主要切割dsRNA或者茎环结构的RNA前体成为小RNAs分子。对应地,我们将这种小RNAs分子命名为siRNAs和miRNA。Dicer有着较多的结构域,最先在果蝇中发现,并且在不同的生物体上表现出很高的保守性。

RNA干扰相关知识Holo-RISC

Holo RISC:是在果蝇中发现的有着RISC活性的最大的RNA-蛋白质复合物(80S)。Holo RISC的生物学活性牵涉到几乎所有的RISC的成员,RLC成员,和一些其他通路上的蛋白质分子。Holo RISC的存在,表明了RISC组装不是孤立的,同时还是一个有序的过程。以RISC为中心的RNA

RNA干扰相关知识MicroRNA(miRNA)

MicroRNA(miRNA):是含有茎环结构的miRNA前体,经过Dicer加工之后的一类非编码的小RNA分子(~21-23个核苷酸)。MiRNA,以及miRISCs(RNA-蛋白质复合物)在动物和植物中广泛表达。因之具有破坏目标特异性基因的转录产物或者诱导翻译抑制的功能,miRNA被认为在调控发

关于RNA干扰的发现介绍

  RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程中发现的,由dsRNA介导的同源RNA降解过程。1995年,Guo等发现注射正义RNA(sense RNA)和反义RNA均能有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义

简述RNA干扰效率的检测

  一般应该从mRNA水平、蛋白质水平、细胞表型水平三个层次来检测干扰效率。  mRNA水平:RT-PCR、Real-time PCR;蛋白质水平:Western-blot、ELISA、免疫组化;细胞表型水平:MTT、克隆形成实验、流式细胞检测、细胞小室实验等。RNA干扰效率在动物模型上的进一步验证

RNA干扰技术的发现历史

RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程中发现的,由dsRNA介导的同源RNA降解过程。1995年,Guo等发现注射正义RNA(sense RNA)和反义RNA均能有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义RN

RNA干扰的发现与研究

RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程中发现的,由dsRNA介导的同源RNA降解过程。1995年,Guo等发现注射正义RNA(sense RNA)和反义RNA均能有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义RN

RNA干扰的主要特点

1.高效性:Elbashir等在研究中发现分别为25 nmol/L与100 nmol/L的起始双链RNA产生的结果是一样的,只是高浓度起始的更有效些。将双链RNA浓度降低到1.5 nmol/L时产生的基因沉默效果变化不大,只有当浓度降低到0.05 nmol/L时,沉默的效果才消失。Holen等也证实