Antpedia LOGO WIKI资讯

地质地球所发现一种示踪“隐藏”古风化壳的新方法

在全球碳循环的研究中,硅酸盐化学风化被认为是大气CO2的一个重要汇。其中,玄武岩的分布面积尽管只有全球陆地表面积的5%,但其风化作用消耗的CO2占所有硅酸盐风化作用消耗的1/3。大规模快速化学风化对气候变化、海洋氧化、生态系统以及生物灭绝事件有直接或间接的影响。风化后的残余物经埋藏、压实和固结可形成“古风化壳”。研究古风化壳是重建古气候以及预测未来气候变化的关键所在,但这方面的研究鲜有报道。一是因为古风化壳常被新形成的火山岩和沉积物所覆盖,难以获取岩样;二是因为古风化壳受后期地质作用改造,难以保存原来的信息。许多火山下部通常发育大量玄武质熔岩,上部则常伴有少量的中酸性岩石。理论上,这些上部晚期形成的中酸性火山岩在其岩浆上升和侵位过程中能够记录围岩信息。因此,如果早期的玄武岩遭受风化作用形成古风化壳并被保存,那么晚期形成的火山岩应该能够记录这一古风化事件。 为了探究如何从晚期火山岩中找到古风化壳的信息,中国科学院地质与地球物......阅读全文

地质地球所发现一种示踪“隐藏”古风化壳的新方法

  在全球碳循环的研究中,硅酸盐化学风化被认为是大气CO2的一个重要汇。其中,玄武岩的分布面积尽管只有全球陆地表面积的5%,但其风化作用消耗的CO2占所有硅酸盐风化作用消耗的1/3。大规模快速化学风化对气候变化、海洋氧化、生态系统以及生物灭绝事件有直接或间接的影响。风化后的残余物经埋藏、压实和固结可

揭示离子吸附型稀土矿床的可见光-近红外光谱特征

  近日,中国科学院广州地球化学研究所研究员何宏平、博士谭伟与香港大学等合作,通过对含稀土的黏土矿物和典型离子吸附型稀土矿床剖面可见光-近红外光谱特征的系统研究,确定了能够有效指示离子吸附型稀土矿床矿体风化程度、稀土含量以及原岩性质的光谱参数,为快速探查离子吸附型稀土矿床新方法的构建提供了理论基础。

古城稀土矿床花岗岩榍石中重稀土活化机制获揭示

中国科学院广州地球化学研究所流体成矿作用学科组冯雨周博士后和陈华勇研究员及其合作者,揭示了榍石稀土元素活化迁移对华南离子吸附型稀土矿床重稀土富集矿化的指示。相关研究发表于American Mineralogist。 稀土是我国优势矿产资源,其中华南地区的离子吸附型稀土矿床为全球提供了约80%的重稀土

冰川退缩加速全球化学风化

近日,西北大学研究团队联合中科院西北生态环境资源研究院、美国宾夕法尼亚州立大学、中科院成都山地灾害与环境研究所等,找到了冰川化学风化速率升高的确凿证据,相关成果发表于《自然—通讯》。该研究基于全球77条冰川5465个径流样品的水化学资料,首次评估了全球冰川的化学风化速率,并揭示了冰川风化速率的时空变

冰期-间冰期流域侵蚀风化与印度夏季风同步变化新发现

  地表岩石/矿物风化被认为是维持地球宜居性和不同尺度碳循环平衡的重要因子,是系统地球科学和地表地球动力学领域研究的基础理论前沿之一。但是,岩石风化与高原隆升、气候变化之间的内在联系存在较多争论,特别是季风盛行的青藏高原周边。其中一个主要原因是相关的侵蚀和风化记录主要来自于物源和气候信息混合的边缘海

浙江探获首个大型稀土矿 资源量超10万吨

  从国土资源部获悉,浙江省地质勘查局第七地质大队在庆元县初步探获全省首个具有工业利用价值的大型稀土矿产地,预测资源量超过10万吨。  据了解,浙江七队项目组自2013年8月进驻庆元县矿区以来,截至目前已完成取样钻9000米,样品测试分析9000多件。普查评价野外工作阶段验收表明,探获的稀土矿床类型

化学风化作用能为变暖地球降温

  最近英国科学家通过对9300万年前化学风化作用的研究发现,二氧化碳排放增多造成全球气候变暖后,随着碳排放的减少,在化学风化作用下,气候会逐渐开始变冷并恢复到原来的水平,这一时间远比科学家们原来预想的要短,但也需要30万年之久。   大气中的二氧化碳会溶解在雨水中,与岩石中的某些化学成分发生反应

晚古生代冰期发生直接原因研究获进展

  晚古生代大冰期发生了显生宙以来持续时间最长、规模最大的成冰事件。这次冰期导致全球古海洋、古气候、古生态发生显著变化,是地球气候环境演化历史上的关键转折期。这次冰期的序幕可追溯到石炭纪最早期(距今3.55亿年左右),全球气候急剧变冷并伴随显著的碳循环波动(杜内中期碳同位素正漂移事件,TICE),是

硅酸盐的化学性质

化学上,指由硅和氧组成的化合物( ),有时亦包括一种或多种金属或氢元素。从概念上可以说硅酸盐是硅,氧和金属组成的化合物的总称。它亦用以表示由二氧化硅或硅酸产生的盐。能与酸反应生成硅酸固体。在普通情况下,最稳定的硅酸盐是二氧化硅(SiO2)和其他物质组成的化合物。   二氧化硅经常有微量的硅酸( )处

研究揭示黄河源头风化和CO2消耗过程的季节变化

  地质时间尺度上,硅酸盐岩的风化通过吸收大气CO2的方式进行,在调控全球气候方面起到关键性作用,从而提供了人类赖以生存的宜居地球环境。然而,影响硅酸盐风化速率的控制机制(气候驱动或构造控制?)是地球科学前沿争论的焦点之一。黄河流经了具有显著差异的地形地貌、岩性、气候和植被等区域,包括源头的青藏高原