荧光原位杂交的染色体分析
荧光原位杂交的染色体分析(一)标本的制备1.室温下,依次用70%、90%和100%的乙醇脱水5min。2.空气干燥载玻片。3.若短期使用,载玻片可在室温贮存数天。若载玻片要长期保存,应在室温下过夜使组织“老化”(aged),然后放入容器中,该容器密封于含干燥剂的塑料袋内,-70℃保存。根据作者的经验,在6个月内使用的载玻片可贮存在-20℃。在杂交实验之前解冻这些载玻片,不提倡反复冻融载玻片。 (二)缺口平移法标记探针通过缺口平移法生物素(酰)化DNA探针1.结合:2μg探针DNA,10μl 10×反应缓冲液,10μl β-巯基乙醇,10μl核苷酸母液(含0.5mmol/L dATP, 0.5mmol/L dCTP, 0.5mmol/L dGTP, 0.5mmol/L生物素-16-dUTP和0.12mmol/L dTTP),20单位DNA聚合酶I和1:1000稀释的DNase I,加双蒸水至100μl(最后加酶......阅读全文
荧光原位杂交的染色体分析
荧光原位杂交的染色体分析(一)标本的制备1.室温下,依次用70%、90%和100%的乙醇脱水5min。2.空气干燥载玻片。3.若短期使用,载玻片可在室温贮存数天。若载玻片要长期保存,应在室温下过夜使组织“老化”(aged),然后放入容器中,该容器密封于含干燥剂的塑料袋内,-70℃保存。根据作者的经验
荧光原位杂交染色体分析技术
FISH是上世纪80年代中期发展起来并直到现在仍在不断改进、完善的技术。其基本过程是:首先制成染色体标本,和与所感兴趣的目的基因(或染色体片段)互补的探针,并在探针上标记荧光色素,当探针与染色体标本上的靶序列杂交后,利用荧光显微镜观察荧光信号从而获得染色体核型的信息。此技术具有灵敏度强、背景低、
荧光原位杂交染色体分析技术
FISH是上世纪80年代中期发展起来并直到现在仍在不断改进、完善的技术。其基本过程是:首先制成染色体标本,和与所感兴趣的目的基因(或染色体片段)互补的探针,并在探针上标记荧光色素,当探针与染色体标本上的靶序列杂交后,利用荧光显微镜观察荧光信号从而获得染色体核型的信息。此技术具有灵敏度强、背景低、
染色体荧光原位杂交技术简介
一、定义:在细胞遗传学,分子生物学和免疫学相结合基础上发展的一种新科学,他利用已知的核酸序列作为探针,以荧光素直接标记或以非放射性物质标记后与靶DNA结合,在通过荧光素标记,最后在荧光显微镜下观察杂交信号,从而对标本中的待测核苷酸进行定性,定位和定量分析。二、原理:利用DNA变性后双链解开变成单链,
染色体荧光原位杂交和染色体核型分析一样吗
从定义来看: 荧光原位杂交方法是一种物理图谱绘制方法,使用荧光素标记探针,以检测探针和分裂中期的染色体或分裂间期的染色质的杂交。 染色体核型分析是将待测细胞的染色体依照该生物固有的染色体形态结构特征,按照一定的规定,人为的对其进行配对、编号和分组,并进行形态分析的过程。 从运用场景来看:
荧光原位杂交的荧光原位杂交
荧光原位杂交(fluorescence in situ hybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法。探针首先与某种介导分子(reporter molecule)结
荧光原位杂交实验——荧光原位杂交技术
荧光原位杂交可应用于:(1)动植物基因组结构研究;(2)染色体精细结构变异分析;(3)病毒感染分析;(4)肿瘤遗传学和基因组进化研究。实验方法原理用已知的标记单链核酸为探针,按照碱基互补的原则,与待检材料中未知的单链核酸进行异性结合,形成可被检测的杂交双链核酸。由于DNA分子在染色体上是沿着染色体纵
原位杂交与荧光原位杂交
一、原位杂交( In Situ Hybridization,ISH) 是用标记的核酸探针,使用非放射检测系统或放射自显影系统,在组织切片、细胞涂片及染色体制片上等对核酸进行定性、定位和相对定量研究的一种分子生物学方法,具有灵敏、特异、直观等优点。已逐渐成为分子生物学和分子病理学的常见技术之一,广泛
原位杂交与荧光原位杂交
一、原位杂交( In Situ Hybridization,ISH) 是用标记的核酸探针,使用非放射检测系统或放射自显影系统,在组织切片、细胞涂片及染色体制片上等对核酸进行定性、定位和相对定量研究的一种分子生物学方法,具有灵敏、特异、直观等优点。已逐渐成为分子生物学和分子病理学的常见技术之一,广泛应
原位杂交与荧光原位杂交
一、原位杂交( In Situ Hybridization,ISH) 是用标记的核酸探针,使用非放射检测系统或放射自显影系统,在组织切片、细胞涂片及染色体制片上等对核酸进行定性、定位和相对定量研究的一种分子生物学方法,具有灵敏、特异、直观等优点。已逐渐成为分子生物学和分子病理学的常见技术之一,广泛
关于荧光原位杂交用于染色体数目与结构异常的介绍
在细胞遗传学检在中,重复序列的探针应用最多,包括a卫星DNA探针、β卫星DNA探针和经典卫星DNA (elassic -stllite DNA )探针。a卫星DNA探针主要检测人染色体的着丝粒。β卫星DNA探针位于顶端着丝粒染色体及染色体的异染色质周围。经典卫星DNA探针有AATCG短片段重复,
荧光原位杂交的概念
荧光原位杂交(Fluorescence in situ hybridization,FISH)是20世纪80年代末在放射性原位杂交技术基础上发展起来的一种非放射性分子生物学和细胞遗传学结合的新技术,是以荧光标记取代同位素标记而形成的一种新的原位杂交方法。
荧光原位杂交的特点
原位杂交的探针按标记分子类型分为放射性标记和非放射性标记。用同位素标记的放射性探针优势在于对制备样品的要求不高,可以通过延长曝光时间加强信号强度,故较灵敏。缺点是探针不稳定、自显影时间长、放射线的散射使得空间分辨率不高、及同位素操作较繁琐等。采用荧光标记系统则可克服这些不足,这就是FISH技术。
荧光原位杂交的发展
荧光原位杂交技术问世于20世纪70年代后期。1977年,荧光标记的抗体被应用于识别特异性DNA—RNA杂交I I。1980年,J.G.Baunlan等将应用化学偶联的方法将荧光素结合到RNA探针上用于直接快速的特异性靶序列检测。
荧光原位杂交的简介
荧光原位杂交(fluorescence in situ hybridization, FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子(reporter molecul
荧光原位杂交的原理
荧光原位杂交(Fluorescence in situ hybridization,FISH)是20世纪80年代末在放射性原位杂交技术基础上发展起来的一种非放射性分子生物学和细胞遗传学结合的新技术,是以荧光标记取代同位素标记而形成的一种新的原位杂交方法。
荧光原位杂交的应用
该技术不但可用于已知基因或序列的染色体定位,而且也可用于未克隆基因或遗传标记及染色体畸变的研究。在基因定性、定量、整合、表达等方面的研究中颇具优势。 FISH最初用于中期染色体。从正在分化的细胞核中制备的这种染色体是高度凝缩的,每条染色体都具有可识别的形态,它们染色后将显现出特征性的着丝粒位置
荧光原位杂交的背景
对于利用rRNA的荧光原位杂交来说,如下原因可导致较低的荧光信号强度: 较低的细胞核糖体含量 较低的细胞周边的通透性 较低的目标序列可接触性(由于rRNA的折叠产生的构象,有些位置与rRNA分子内其他链或其他rRNA或蛋白紧密接触,从而使探针无法和目标序列杂交) 为检验细胞中的目标序列是
荧光原位杂交介绍
荧光原位杂交(fluorescence in situ hybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子(reporter molecule)结
RNA荧光原位杂交
原位杂交:在研究DNA分子复制原理的基础上发展起来的一种技术。其基本原理是两条核苷酸单链片段,在适宜的条件下,能过氢键结合,形成DNA-DNA、DNA-RNA或 RNA-RNA 双键分子的特点,应带有标记的(有放射性同位素,如3H、35S、32P、荧光素生物素、地高辛等非放射性物质)DAN或 RNA
荧光原位杂交实验
实验原理荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗传学技术,是20世纪80年代末期在原有的放射性原位杂交技术的基础上发展起来的一种非放射性原位杂交技术。目前这项技术已经广泛应用于动植物基因组结构研究、染色体精细结构变异分析、
荧光原位杂交实验
实验方法原理 荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗传学技术,是20世纪80年代末期在原有的放射性原位杂交技术的基础上发展起来的一种非放射性原位杂交技术。目前这项技术已经广泛应用于动植物基因组结构研究、染色体精细结构变
荧光原位杂交实验
实验方法原理 用已知的标记单链核酸为探针,按照碱基互补的原则,与待检材料中未知的单链核酸进行异性结合,形成可被检测的杂交双链核酸。由于DNA分子在染色体上是沿着染色体纵轴呈线性排列,因而可以探针直接与染色体进行杂交从而将特定的基因在染色体上
FISH荧光原位杂交实验(原位杂交)
1. 实验目的 通过实验了解荧光原位杂交技术的基本原理和在生物学、医学领域的应用。掌握原位杂交技术的操作方法,熟练掌握荧光显微镜的使用方法。2. 实验原理 荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗
荧光原位杂交用于基因染色体定位和基因图谱绘制
目前应用的基因定位的主要方法是FISH。分离到的DNA序列直接通过FISH,同时采用多种颜色荧光素的标记探针,结合中期染色体和间期细胞方面的信息,可快速确定一-系列DNA序列之间的相互次序和距离,完成基因制图。用不同颜色炎光索标记2个不同的DNA链,而且他们在染色体上的距离大于1Mbp时,可以依
多色荧光原位杂交方法同时检测人精子染色体数目畸变
背景与目的:建立可以同时检测人精子染色体数目畸变和结构畸变的多色荧光原位杂交技术。材料与方法:使用2条1号染色体探针(着丝粒和末端探针),2条18号染色体着丝粒探针,分别用地高辛或生物素标记,与人精子核dna进行荧光原位杂交,用cy3-链亲和素检测生物素探针杂交信号;用与fitc结合的抗地高辛抗体检
多色荧光原位杂交方法同时检测人精子染色体数目畸变...
多色荧光原位杂交方法同时检测人精子染色体数目畸变和结构畸变背景与目的:建立可以同时检测人精子染色体数目畸变和结构畸变的多色荧光原位杂交技术。材料与方法:使用2条1号染色体探针(着丝粒和末端探针),2条18号染色体着丝粒探针,分别用地高辛或生物素标记,与人精子核dna进行荧光原位杂交,用cy3-链亲和
荧光原位杂交的基本介绍
中文名荧光原位杂交外文名Fluorescence in situ hybridization简 写FISH工 程DNA分子杂交材 料荧光标记标志物特异寡聚核苷酸片段目 的检测该特异微生物种群的存在
荧光原位杂交技术的问世
荧光标记技术(FISH)指利用一些能发射荧光的物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。 上述试题的技术是在原荧光标记技术基础上发展起来的荧光原位杂交技术。 1969年,Gall和Pardue等首次将同位素探针用于原位杂交实验,获得成功。 1
荧光原位杂交技术的背景
对于利用rRNA的荧光原位杂交来说,如下原因可导致较低的荧光信号强度: 较低的细胞核糖体含量 较低的细胞周边的通透性 较低的目标序列可接触性(由于rRNA的折叠产生的构象,有些位置与rRNA分子内其他链或其他rRNA或蛋白紧密接触,从而使探针无法和目标序列杂交) 为检验细胞中的目标序列是