Antpedia LOGO WIKI资讯

高分辨率荧光显微技术的发展

近二十年来,荧光显微技术有了长足的进步,上周Nature,Science杂志就高分辨率荧光显微技术分别发文,聚焦了这一领域的重要进展。 荧光显微技术是一种分析分子生物学,细胞生物学的重要工具,这一方法能帮助科研人员了解细胞和活体生物的空间结构。通过一些荧光标记,比如GFP等,研究人员就能观测到蛋白组织构架,蛋白相互作用,以及一些动力学方面的机制。 但是这一技术有一个重要的缺陷,即分辨率,传统光学显微镜受限于光的波长,对于200nm以下的小东西只能摇头兴叹。虽然电子显微镜可以达到奈米级的分辨率,但通电的结果容易造成样品的破坏,因此能观测的样本也相当有限。分子生物学家虽然可以做到把若干想观察的蛋白质贴上荧光卷标,但这些蛋白质还是经常挤在一块,在显微镜下分不出谁是谁。 近年来随着着各项工具方法的发展,尤其是物理学界接二连三出现的重大科研进展,显微技术发展迅速,特别是将纳米技术引入这一领域之后,科学家们研发出了多项高分辨率的显微......阅读全文

原子荧光荧光值偏低

如果稳定性差,那你的线性就不在继续了。建议 看看是否是管路堵塞了。(平时500~600的只有几十的样子)如果是这样的 我很怀疑的火焰是否点着了还有你的电流用多少,伏高压又是多少?只是你上面的描述很难再继续判断了

荧光红移代表荧光增强吗

荧光红移不代表荧光增强。在物理学领域,荧光红移是指电磁辐射由于某种原因导致波长增加、频率降低的现象。红移现象往往是分子中引入助色基团或带色团,或由于溶剂的影响而发生,并非是荧光增强。所以荧光红移不代表荧光增强。

荧光检测器的荧光生产

  从电子跃迁的角度来讲,荧光是指某些物质吸收了与它本身特征频率相同的光线以后,原子中的某些电子从基态中的最低振动能级跃迁到较高的某些振动能级。电子在同类分子或其他分子中撞击,消耗了相当的能量,从而下降到第一电子激发态中的最低振动能级,能量的这种转移形式称为无辐射跃迁。由最低振动能级下降到基态中的某

荧光显微镜检测荧光

生物显微镜是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。左图所示为生产的倒置生物显微镜型,该生物显微镜也是食品厂、饮用水厂办QS、HACCP认证的必备检验设备。生物显微镜供医疗卫生单位、高等院校、研究所用于微生

荧光红移代表荧光增强吗

荧光红移不代表荧光增强。在物理学领域,荧光红移是指电磁辐射由于某种原因导致波长增加、频率降低的现象。红移现象往往是分子中引入助色基团或带色团,或由于溶剂的影响而发生,并非是荧光增强。所以荧光红移不代表荧光增强。

单分子荧光染料——ATTO荧光染料

单分子荧光检测技术是近十年来迅速发展起来的一种超灵敏的检测技术,其检测尺度可以精确到纳米量级,是单分子检测的首选方法。该检测技术利用荧光标记来显示和追踪单个分子的构象变化、动力学、单分子之间的相互作用以及进行单分子操纵。而荧光染料作为重要的标记物在单分子检测中起到了举足轻重的作用。荧光染料,指吸收某

荧光红移代表荧光增强吗

荧光红移不代表荧光增强。在物理学领域,荧光红移是指电磁辐射由于某种原因导致波长增加、频率降低的现象。红移现象往往是分子中引入助色基团或带色团,或由于溶剂的影响而发生,并非是荧光增强。所以荧光红移不代表荧光增强。

单分子荧光染料——ATTO荧光染料

单分子荧光检测技术是近十年来迅速发展起来的一种超灵敏的检测技术,其检测尺度可以精确到纳米量级,是单分子检测的首选方法。该检测技术利用荧光标记来显示和追踪单个分子的构象变化、动力学、单分子之间的相互作用以及进行单分子操纵。而荧光染料作为重要的标记物在单分子检测中起到了举足轻重的作用。荧光染料,指吸收某

荧光测量

荧光测量对许多生物学(叶绿素和类胡萝卜素)、生物医学(病变的荧光诊断)和环境监测是必要的测量手段。荧光测量通常需要高灵敏度的光谱仪(推荐使用AvaSpec-2048TEC,积分时间大于 5秒)。对于大多数荧光应用来说,产生的荧光能量只相当于激发光能量的3%左右。荧光的光子能量比激发光的光子能

自发荧光

自发荧光(对甲醛固定的组织样品尤为显著)产生的问题在表现上与串色类似。有自发荧光的样品激发后经常会在其他通道检测出荧光发射,使得到的照片看起来有共定位荧光团。如用抗体和合成荧光团对背景过度染色,也会在两个荧光团非特异性标记明显的地方产生看起来像共定位的图像。这个假象可以通过认真地制备样品、用合适的