FITC荧光二抗?——EarthOx新型DyLight488绿色荧光

FITC(Fluorescein Isothiocyanate,异硫*酸荧光素)是一种绿色荧光团,在免疫学实验里,经常被用于荧光团标记到相应的检测分子,如抗体上。FITC的纯品为黄色或橙黄色结晶粉末,易溶于水和酒精溶剂。FITC分子量为389.4,最大吸收光波长为 490~495nm,最大发射光波长为520~530nm,呈现明亮的黄绿色荧光。FITC在冷暗干燥处可保存多年,是目前应用最广泛的荧光素。由于FITC是小分子化合物,每一个抗体可标记几个FITC分子,IgM通常用小分子的荧光素标记,如FITC、Cy3/5、Texas Red等。 我们知道,FITC的绿色荧光强度肉眼观察已经很亮了,但是从上面的图可见,与Cy2相比还是偏弱,而DyLight 488则更胜一筹。DyLight是一种新型的荧光分子,与传统的荧光团如FITC、Rhoda......阅读全文

Abbkine新型DyLight-488绿色荧光

顾名思义,荧光二抗通常指代的就是带荧光团标记的二抗,这样的二抗可以通过观察其在不同波长下荧光的强度来确定其二抗的含量。常见的荧光团包括FITC、Rhodamine、Texas Red、PE、Cy系列等。比如FITC即异硫氰酸荧光素,是目前应用最广泛的荧光素。最大吸收光波长为490~495nm,最

FITC荧光二抗?——EarthOx新型DyLight-488绿色荧光

FITC(Fluorescein Isothiocyanate,异硫*酸荧光素)是一种绿色荧光团,在免疫学实验里,经常被用于荧光团标记到相应的检测分子,如抗体上。FITC的纯品为黄色或橙黄色结晶粉末,易溶于水和酒精溶剂。FITC分子量为389.4,最大吸收光波长为 490~495nm,最大发射光波长

荧光二抗488用什么稀释

含2.5%BSA和0.5%triton的PBS溶液。荧光二抗488用含2.5%BSA和0.5%triton的PBS溶液稀释二抗,室温避光孵育2小时。荧光二抗通常指代的就是带荧光团标记的二抗,这样的二抗可以通过观察其在不同波长下荧光的强度来确定其二抗的含量。

荧光二抗488用什么稀释

含2.5%BSA和0.5%triton的PBS溶液。荧光二抗488用含2.5%BSA和0.5%triton的PBS溶液稀释二抗,室温避光孵育2小时。荧光二抗通常指代的就是带荧光团标记的二抗,这样的二抗可以通过观察其在不同波长下荧光的强度来确定其二抗的含量。

绿色荧光蛋白简介

绿色萤光蛋白(Green fluorescent protein;简称GFP),由下村脩等人于1962年在维多利亚多管发光水母中发现,其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光,整个发光的过程中还需要冷光蛋白质水母素的帮助,冷光蛋白质与钙离子(Ca2+)可产生交互作用。2008

什么是绿色荧光蛋白

绿色荧光蛋白分子的形状呈圆柱形,就像一个桶,负责发光的基团位于桶中央,因此,绿色荧光蛋白可形象地比喻成一个装有色素的“油漆桶”。装在“桶”中的发光基团对蓝色光照特别敏感。当它受到蓝光照射时,会吸收蓝光的部分能量,然后发射出绿色的荧光。利用这一性质,生物学家们可以用绿色荧光蛋白来标记几乎任何生物分子或

绿色荧光蛋白的应用

由于荧光蛋白能稳定在后代遗传,并且能根据启动子特异性地表达,在需要定量或其他实验中慢慢取代了传统的化学染料。更多地,荧光蛋白被改造成了不同的新工具,既提供了解决问题的新思路,也可能带来更多有价值的新问题。

什么是绿色荧光蛋白?

  绿色荧光蛋白分子的形状呈圆柱形,就像一个桶,负责发光的基团位于桶中央,因此,绿色荧光蛋白可形象地比喻成一个装有色素的“油漆桶”。装在“桶”中的发光基团对蓝色光照特别敏感。当它受到蓝光照射时,会吸收蓝光的部分能量,然后发射出绿色的荧光。利用这一性质,生物学家们可以用绿色荧光蛋白来标记几乎任何生物分

绿色荧光蛋白GFP性质

  GFP荧光极其稳定,在激发光照射下,GFP抗光漂白(Photobleaching)能力比荧光素(fluorescein)强,特别在450~490nm蓝光波长下更稳定。  GFP需要在氧化状态下产生荧光,强还原剂能使GFP转变为非荧光形式,但一旦重新暴露在空气或氧气中,GFP荧光便立即得到恢复。而

活体GFP绿色荧光成像系统

  系统提供动物活体绿色荧光蛋白的实时观察与成像等一系列的荧光检测。能够应用在像深度肿瘤,大动物等活体肿瘤追踪观察成像研究。    该设备是一个高灵敏度的图像成像工作系统,主要利用特定波长的激光进行激发后,通过高灵敏度的致冷CCD进行实时检测后,获得所需的各类 特性的图像,有利于进一步的分析作用 。

绿色荧光蛋白离心菌体能看到绿色吗

本人亲身体验证明,真的可以看见,颜色类似于抹茶沙拉酱,破菌后可以看到明显的亮绿色。当然跟表达量也有关系,本人表达量为4mg/L菌液。

绿色荧光蛋白的功能介绍

绿色荧光蛋白(Green fluorescent protein,简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色荧光。虽然许多其他海洋生物也有类似的绿色荧光蛋白,但传统上,绿色荧光蛋白(GFP)指首先从维多利亚多管发光水母中分离的蛋白质。这种蛋白质最早是由下

绿色荧光蛋白融合抗体研究

  融合抗体  近二十年来,抗体生成技术有了飞速发展,已经从细胞工程抗体(杂交瘤技术一单克隆抗体)发展到了第三代抗体:基因工程抗体,尤其是噬菌体抗体库技术的出现,解决了人源抗体的研制问题,促进了各种性能优良抗体以及具有多种功能的抗体融合蛋白的开发。单链抗体(Single-chain variable

绿色荧光蛋白的结构特点

野生型绿色荧光蛋白,最开始是 238 个氨基酸的肽链,约 25KDa。然后按一定规则,11 条β-折叠在外周围成圆柱状的栅栏;圆柱中,α-螺旋把发色团固定在几乎正中心处。发色图被围在中心,能避免偶极化的水分子、顺磁化的氧分子或者顺反异构作用与发色团,致使荧光猝灭。荧光是荧光蛋白最特别的特点,而其中的

绿色荧光蛋白(GFP)的应用

  骨架和细胞分裂  Kevin Sullivan's 实验室  酵母菌内SPB 和微管动力学  酵母菌中肌动蛋白的动力  果蝇中MEI-S332蛋白  果蝇有丝分裂和mRNA运输  网丙菌属细胞骨架  RNA剪切因子的核内运输  网丙菌属的趋化作用  网丙菌属中细胞骨架动力和细胞运动  核

绿色荧光蛋白的应用特点

由于荧光蛋白能稳定在后代遗传,并且能根据启动子特异性地表达,在需要定量或其他实验中慢慢取代了传统的化学染料。更多地,荧光蛋白被改造成了不同的新工具,既提供了解决问题的新思路,也可能带来更多有价值的新问题。GFP和它的衍生物的可用性已经彻底重新定义荧光显微镜,以及它被用来在细胞生物学和其他生物学科的方

绿色荧光蛋白的发现过程

1994年,华裔美国科学家钱永健(Roger Yonchien Tsien)开始改造GFP,有多项发现。世界上用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的黄色、蓝色,有的可激活、可变色。到一些不常用做研究模式的生物体内找有颜色的蛋白成为一些人的爱好,现象正如当年在嗜热生物中找到以后应用广

绿色荧光蛋白的发现过程

1994年,华裔美国科学家钱永健(Roger Yonchien Tsien)开始改造GFP,有多项发现。世界上用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的黄色、蓝色,有的可激活、可变色。到一些不常用做研究模式的生物体内找有颜色的蛋白成为一些人的爱好,现象正如当年在嗜热生物中找到以后应用广

绿色荧光蛋白的结构介绍

野生型绿色荧光蛋白,最开始是 238 个氨基酸的肽链,约 25KDa。然后按一定规则,11 条β-折叠在外周围成圆柱状的栅栏;圆柱中,α-螺旋把发色团固定在几乎正中心处。发色图被围在中心,能避免偶极化的水分子、顺磁化的氧分子或者顺反异构作用与发色团,致使荧光猝灭。荧光是荧光蛋白最特别的特点,而其中的

绿色荧光蛋白的基本结构

野生型绿色荧光蛋白,最开始是 238 个氨基酸的肽链,约 25KDa。然后按一定规则,11 条β-折叠在外周围成圆柱状的栅栏;圆柱中,α-螺旋把发色团固定在几乎正中心处。发色图被围在中心,能避免偶极化的水分子、顺磁化的氧分子或者顺反异构作用与发色团,致使荧光猝灭。荧光是荧光蛋白最特别的特点,而其中的

绿色荧光蛋白的发现过程

1994年,华裔美国科学家钱永健(Roger Yonchien Tsien)开始改造GFP,有多项发现。世界上用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的黄色、蓝色,有的可激活、可变色。到一些不常用做研究模式的生物体内找有颜色的蛋白成为一些人的爱好,现象正如当年在嗜热生物中找到以后应用广

绿色荧光的激发波长是多少

  olympus ix71 绿色荧光的激发波长是460nm~550nm  紫外:激发片波长 330nm~400nm 发射片波长: 425nm  紫:激发片波长395nm~415nm 发射片波长:455nm  蓝 : 激发片波长:420nm~485nm 发射片波长:515nm  绿: 激发片波长:4

DyLight荧光二抗——美国Abbkine高性价比的全新荧光体验-一

美国Abbkine的DyLight™系列荧 光标记是一种近年来被广泛应用的新型荧光染料,由于具有很好的光谱宽度、更强的荧光强度,更高的光学耐受性(抗淬灭性)、对pH不敏感、分子较小而渗透性更好的优势,越来越受到科研客户的喜爱。DyLight™种类齐全,如Dylight 405是蓝色荧光,

绿色荧光蛋白分子标记的研究

  分子标记  作为一种新型的报告基因,GFP已在生物学的许多研究领域得到应用。利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内

绿色荧光蛋白的概念和发现

绿色荧光蛋白(Green fluorescent protein,简称GFP),是一个由约238个氨基酸组成的蛋白质,从蓝光到紫外线都能使其激发,发出绿色萤光。虽然许多其他海洋生物也有类似的绿色荧光蛋白,但传统上,绿色荧光蛋白(GFP)指首先从维多利亚多管发光水母中分离的蛋白质。这种蛋白质最早是由下

绿色荧光蛋白的研究与应用

1962年,已经有文献报道科学家从多管水母属的发光型水螅水母(luminous hydromedusan Aequorea)中提取到了具有生物发光性质的蛋白质。到了上世纪70年代,对生物发光的现象才有了一些新的进展。有科学家研究了多管水母属生物发光系统的分子内能量转移。到了九十年代初,科学家才克隆到

绿色荧光蛋白在胞外环境能激发荧光吗

绿色荧光蛋白在胞外环境能激发荧光吗绿色荧光蛋的发光机理比荧光素/荧光素酶要简单得多。一种荧光素酶只能与相对应的一种荧光素合作来发光,而绿色荧光蛋白并不需要与其他物质合作,只需要用蓝光照射,就能自己发光。在生物学研究中,科学家们常常利用这种能自己发光的荧光分子来作为生物体的标记。将这种荧光分子通过化学

Alexa-Fluor®-488-Annexin-V/Dead-Cell-Apoptosis-Kit

实验概要Apoptosis is a  carefully regulated process of cell death that occurs as a normal part  of development. Inappropriately regulated apoptosis is imp

体视显微镜荧光适配器lueStar绿色荧光观测镜

实验方法及结果研究者使用了NIGHTSEA的体视显微镜荧光适配器(SFA,Stereo Microscope Fluorescence Adapter)和BlueStar绿色荧光观测镜(BlueStar flashlight and filter glasses package)。显而易见的,这两套

荧光素大全:荧光素及其衍生物产品汇总(一)

荧光素衍生物具有高吸收率,出色的荧光量子产率和良好的水溶性,是流式细胞仪和免疫荧光法等生物检测中最常用的荧光标记之一。最广泛使用的荧光素包括用于标记蛋白质(特别是抗体)的异硫氰酸荧光素(FITC)和用于标记肽和寡核苷酸的羧基荧光素(5-FAM和5(6)-FAM)。 我们提供各类的荧光素染料,底物