光敏生物素核酸探针原位杂交组化程序

(1)石蜡切片脱蜡入水后,置0.1mol/l PBS pH7.2冲洗5min;冰冻切片直接入PBS冲洗5min。 (2)0.1mol/l 甘氨酸PBS冲洗5min。 (3)0.4%Trition X-100 PBS 冲洗15min。 (4)蛋白酶K1μg/ml(0.1mol/l Tris –HCl pH8.0, 50mmol/L EDTA配)37℃保温30min。 (5)4%多聚甲醛PBS固定5min。 (6)0.1mol/l PBS冲洗2×3min。 (7)0.25%乙酸酐(0.1mol/l 三乙醇胺配制)10min。 (8)2×SSC冲洗10min(1×SSC:0.15mol/l NaCl, 0.015mol/L 柠檬酸钠)。 (9)取10μl含相应探针的杂交液滴于标本上,如果是cDNA探针则用前将探针于95℃水浴中保温10min,马上放入冰浴中冷却,然后再用。 (10)盖上22×22mm的硅化盖片或合适大......阅读全文

光敏生物素核酸探针原位杂交组化程序

(1)石蜡切片脱蜡入水后,置0.1mol/l PBS pH7.2冲洗5min;冰冻切片直接入PBS冲洗5min。  (2)0.1mol/l 甘氨酸PBS冲洗5min。  (3)0.4%Trition X-100 PBS 冲洗15min。  (4)蛋白酶K1μg/ml(0.1mol/l Tris –H

原位杂交组织化学实验技术1

第一节 原位杂交组织化学概述  一、核酸分子杂交技术  1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆、质

核酸探针标记及原位杂交

一、核酸探针标记核酸探针分子杂交是指具有一定同源性的两条核酸单链在一定条件下(适宜的温度及离子强度等)可按碱基互补原则形成双链,此杂交过程是高度特异的。杂交的双方是待测核酸及探针。核酸探针根据核酸的性质,可分为DNA和RNA探针;根据标记物不同,可分为放射性标记探针和非放射性标记探针两大类;根据是否

核酸探针标记及原位杂交

一、核酸探针标记 核酸探针分子杂交是指具有一定同源性的两条核酸单链在一定条件下(适宜的温度及离子强度等)可按碱基互补原则形成双链,此杂交过程是高度特异的。杂交的双方是待测核酸及探针。 核酸探针根据核酸的性质,可分为DNA和RNA探针;根据标记物不同,可分为放射性标记探针和非放射性标记探针两大

常用DAN探针制备的方法介绍光敏生物素标记

光敏生物素标记(photobiotin labeling)是Forster(1985)等报道的核酸探针制备方法。光敏生物素是一种可用光照活化的生物素衍生物,它的乙酸盐很容易溶于水,在水溶液中将光敏生物素乙酸盐与需要标记的核酸混合,用强的可见光照射,就可将生物素标记在单链或双链的 DNA 或 RNA

核酸探针标记及原位杂交3

3.注意事项(1)避光下准备反应体系:由于光敏生物素醋酸盐对光敏感,应避免光照。在分装试剂及核酸与光敏生物素混合时应在暗室安全灯下操作。(2)核酸纯度:由于光敏生物素能与任何有机物反应,因此用做标记探针的核酸要高度纯化。用作标记探针的核酸最好不用Tris溶液溶解,Tris中所含氨基会干扰标记。(3)

核酸探针标记及原位杂交2

(二)随机引物合成法 随机引物合成双链探针是使寡核苷酸引物与DNA模板结合,在Klenow酶的作用下,合成DNA探针。合成产物的大小、产量、比活性依赖于反应中模板、引物、dNTP和酶的量。通常,产物平均长度为400~600个,可以获得大量的有效探针。反应时对模板的要求不严格,用微量制备的质

核酸探针标记及原位杂交4

(三)试剂配制配制溶液过程中均需戴手套,液体配制均用超净水,所用瓶子均经160℃烘烤4h,主要目的是去除RNA酶。1.DEPC水 将DEPC按1‰浓度加入超净水中,充分混合后静置过夜,15~20min高压消毒,之后室温避尘存放。2.0.1mol PBS pH 7.4A液:0.1mol NaH2PO4

核酸探针标记及原位杂交1

一、核酸探针标记核酸探针分子杂交是指具有一定同源性的两条核酸单链在一定条件下(适宜的温度及离子强度等)可按碱基互补原则形成双链,此杂交过程是高度特异的。杂交的双方是待测核酸及探针。核酸探针根据核酸的性质,可分为DNA和RNA探针;根据标记物不同,可分为放射性标记探针和非放射性标记探针两大类;根据是否

原位杂交组织化学技术的基本方法

一、核酸分子杂交技术1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆、质粒和噬菌体DNA的构建成功,核酸自动

原位杂交组织化学技术的基本方法

一、核酸分子杂交技术1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆、质粒和噬菌体DNA的构建成功,核酸自动

原位杂交组织化学概述

一、核酸分子杂交技术1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆、质粒和噬菌体DNA的构建成功,核酸自动

什么是荧光原位杂交有什么用?

  原位杂交(In Situ Hybridization)也叫原位杂交组化(in situ hybridization histochemistry, ISHH),是一种固相分子杂交的方法,它是用标记的DNA或RNA为探针,在原位检测组织或细胞内特定核酸序列的方法。探针的种类按所带标记物可分为同位素

非放射性标记探针的双重标记原位杂交

     如果用不同的标记物标记不同的核酸探针,只要互相不影响各自的杂交反应,检测系统也不相互干扰,杂交信号易于分辨,原则上均能用于双重或多重标记原位杂交。应用非放射性标记探针的双重标记原位杂交。可克服放射性核素标记探针的分辨率低、时间长以及放射性污染等缺点。    1.应用生物素标记探针的双重标记

细胞因子分子生物学方法

  这是一类利用细胞因子的基因探针检测特定细胞因子基因表达的技术。目前所有公认的细胞因子的基因均已克隆化,故能较容易地得到某一细胞因子的cDNA探针或根据已知的核苷酸序列人工合成寡聚核苷酸探针。利用基因探针检测细胞因子mRNA表达的方法多种多样,常使用斑点杂交、Northernblot、逆转录PCR

原位杂交组织化学实验技术4

 二、生物素标记cRNA探针在原位杂交组织化学中的应用  (一)光敏生物素标记cRNA探针的应用  以线性质粒DNA为模板合成未加标记物的cRNA探针,使其最终浓度为0.5~1.0μg/μl(500~1000ng/μl),再与等体积的光敏生物素(1μg/μl)混合。在150瓦卤素灯下,距离光源20c

cRNA探针在原位杂交组织化学

Angerer及其同事们首先应用RNA探针于原位杂交(见Cox et al 1984),核酸探针为单链的RNA分子,产生自具有质粒逆转录系统的cDNA克隆(图20-2)。由于它是单链的,不像双链的DNA探针,在溶液中不会再退火(reanneal),因此,较大百分比的探针可参与杂交反应,较cDNA探针

光敏生物素试剂盒杂交实验

实验概要 Southern技术是指以Southern名字命名的DNA转移杂交技术。它可用于基因组特定DNA序列的定位,可以测定相关片段的同源性、可以从c库、基因组文库中筛选完整基因等。用一种或多种限制性内切酶对基因组DNA加以切割,通过琼脂糖凝胶电泳分离酶切片段,随后,使DNA在原位变性,并从凝

双重和多重原位杂交(hybridization-in-situ)技术

为了在同一标本上或同一细胞内同时检测是否存在两种或两种以上的靶核酸序列。可应用双重或多重原位杂交技术.即以两种或多种标记探针与靶核酸杂交。然后利用不同的检测手段分别显示各种靶核酸的存在和分布。该技术与免疫组织化学技术中的双重或多重标记相似,除了探针本身的特异性外,对结果的干扰主要来自标记物及检测试剂

原位杂交组织化学杂交体检测

   杂交体检测又称杂交体显示,是指通过一定方法使杂交反应形成的杂交体(杂交信号)成为在显微镜下可识别的产物。对原位杂交反应信号进行显示的方法因探针标记物不同而异。    (一)放射性核素标记探针的检测    *个原位杂交实验(1969年)以’H作为核酸探针的标记物,杂交信号用放射自显影术检测。随着

原位杂交组织化学实验技术6

二、快速原位杂交细胞化学技术  原位杂交免疫细胞化学技术存在的难点之一是实验手续繁琐,实验周期长。国外Liesi等(1986)和国内学者何彬等应用光敏生物素-链亲合素(Biotin-streptavidin)胶体金系统进行原位杂交,得到了快速满意的结果,全部实验可在数小时内完成。  作用把含某种多肽

DNA探针原位杂交

  1、4—6微米切片,用防脱片胶(多聚赖氨酸)处理过的玻片贴附  2、56—60℃烤片2—16h  3、新鲜二甲苯脱蜡,10minX2(趁热脱蜡)  4、100%乙醇5minX2次,不用浸水,直接空气干燥  5、加入50μl蛋白酶K工作液(蛋白酶K用蒸馏水稀释,浓度为25μg/ml),37℃消化1

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种

​-荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重

简述荧光原位杂交的技术原理

  荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 [2]  荧光原位

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重

荧光原位杂交技术的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重