Antpedia LOGO WIKI资讯

基于超振荡效应的声学超透镜打破衍射极限

近日,中国科学院深圳先进技术研究院劳特伯生物医学成像研究中心超声团队研究员郑海荣、蔡飞燕与华中科技大学教授祝雪丰、新加坡国立大学教授仇成伟合作在超振荡波束与声学超透镜研究中取得进展。相关研究成果以Ultrasonic super-oscillation wave-packets with an acoustic meta-lens(《基于超振荡波束的声学超透镜》)为题于7月30日发表于《自然-通讯》(Nature Communications)。 波在传播过程中会伴随衍射现象,即波遇到障碍物时,部分会绕至障碍物后并继续向前传播。由于衍射效应的存在,一个理想物点经过成像系统形成的像,不可能为一个无尺寸大小的理想点,而是一个有尺寸的弥散斑,即艾里斑。当两个弥散斑相互交叠到一定程度时,成像系统便无法区分开。因此,成像系统的分辨率与弥散斑的尺寸直接相关,弥散斑尺寸越大,成像系统分辨率越低。在过去的几十年里,突破衍射极限是光学和声学......阅读全文

传统光学显微镜与近场光学显微镜

      近场光学显微镜是对于常规光学显微镜的革命。它不用光学透镜成像,而用探针的针尖在样品表面上方扫描获得样品表面的信息。分析了传统光学显微镜与近场光学显微镜成像原理的物理本质和两种显微镜系统结构的异同点。介绍了光纤探针的制作方法。重点讨论了近场探测原理、光学隧道效

“超材料”揭开“神秘面纱” 从实验室大步迈入市场

  据英国《自然》杂志网站近日报道,近几年,“超材料”逐渐成为科学家们争相研究的前沿领域。他们表示,经过工程学方法处理的具有新奇光学属性的“超材料”在不久的将来,会揭开自己“神秘面纱”,从实验室大步迈入市场。   “超材料”:生活中不可或缺   如果汤姆·德里斯科尔从来没有听说过“哈利·波特式的

盘点丨问鼎诺贝尔奖的10大检测技术

  诺贝尔奖是以瑞典著名的化学家 阿尔弗雷德·贝恩哈德·诺贝尔的部分遗产(3100万瑞典克朗)作为基金在1900年创立的。该奖项授予世界上在物理、化学、生理学或医学、文学、和平和经济学六个领域对人类做出重大贡献的人,于1901年首次颁发,截止2016年共授予了881位个人和23个团体。今天我们将盘点

冷镱原子精密光谱的研究进展

20 世纪末,科学家们利用激光实现了原子的冷却和囚禁,并因此荣获1997 年诺贝尔物理学奖。将冷原子应用于光谱测量可极大提高光谱的精度和分辨率,非常适合用来精确研究原子的内部结构和物理性质,检验基础物理规律和探索新的物理。一方面,原子经过激光冷却后运动速度减小,可冷却至μK、nK甚至pK的温度,原子

冷镱原子精密光谱的研究进展

  1 引言  20 世纪末,科学家们利用激光实现了原子的冷却和囚禁,并因此荣获1997 年诺贝尔物理学奖。将冷原子应用于光谱测量可极大提高光谱的精度和分辨率,非常适合用来精确研究原子的内部结构和物理性质,检验基础物理规律和探索新的物理。一方面,原子经过激光冷却后运动速度减小,可冷却至μK、nK甚至

2449.8万!这所高校发布采购建设分析测试中心平台

  分析测试百科网讯 近日,海南省教学仪器设备招标中心受招标人海南大学委托,采购场发射透射电子显微镜、基质辅助激光解析电离串联飞行时间质谱仪、纳米喷雾干燥仪、石英晶体微天平、多功能样品前处理平台、热重-红外图像-气质联用原位反应系统、显微傅里叶变换红外光谱仪+光声光谱检测器、差示扫描量热

毫米波与太赫兹技术

今日推荐文章作者为东南大学毫米波国家重点实验室主任、IEEE Fellow 著名毫米波专家洪伟教授,本文选自《毫米波与太赫兹技术》,发表于《中国科学: 信息科学》2016 年第46卷第8 期——《信息科学与技术若干前沿问题评述专刊》,射频百花潭配图。引言随着对电磁波谱的不断探索, 人类对电子学和光学

超分辨成像系统让纳米机器人眼光更犀利

  近日,中科院沈阳自动化研究所的研究人员研发出具有实时视觉反馈能力的扫描微透镜超分辨成像技术,这种新技术可在自然条件下打破光学衍射定律所限制的观测极限,实现生命和非生命样品的超分辨实时观测,让纳米机器人的眼睛更加“锐利”。相关成果发表在近日的《自然通讯》期刊上。  光学显微镜所能观测的物体极限尺寸

新型超分辨显微技术的最新研究进展

从17世纪开始,现代生物学的发展就与显微成像技术紧密相关。然而,由于受光学衍射极限的影响,传统光学显微成像分辨率最小约为入射光波长的一半。因此,科学家们一直在不断努力,试图寻找突破光学显微镜分辨极限的方法。 在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不

中国科学家研发出微纳观测新技术

  近日,中科院沈阳自动化研究所科研人员研发出具有实时视觉反馈能力的扫描微透镜超分辨成像技术(SSUM),该技术无需荧光染色和激光激发,可以在自然条件下打破光学衍射定律所限制的观测极限,实现了生命和非生命样品的超分辨实时观测。该项成果对实现纳米尺度生命物质和非生命物质的动态追踪,提升纳米机器人的功能

X射线衍射光学部件的制备及其光学性能表征(一)

陈宜方     摘要: 综述了国内外在纳米加工X射线衍射光学透镜方面的研究现状和最新进展。介绍了作者团队过去三年在这方面做的工作。针对衍射透镜关键技术,研发了具有大高宽比形貌的电子束光刻基础工艺;结合金电镀,提出了纳米尺度波带片的制造技术,并

西安光机所超构材料技术研究获进展

  近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室百人计划研究员张鹏与黑龙江大学、华中科技大学、香港理工大学和美国密西根大学等研究单位合作,设计了一种螺旋式超构材料并应用该材料实现了声速减慢和波束相位调控。作为共同第一作者单位,该研究成果于5月20日发表在Nature Com

AFM光学测量

光学测量突破光学衍射极限实现纳米级的光学成像与探测,一直是光学技术发展的前沿。2014 年诺贝尔化学奖授予了突破光学衍射极限的超分辨光学显微成像技术,包括受激发射损耗显微术、光敏定位显微术、随机光学重建显微术、饱和结构照明显微技术等。将AFM与光学技术结合起来,可以研究微纳米尺度下的光学现象和进行光

国家基金委八大学部公布“优先发展领域及主要研究方向”

  “十三五”期间,通过支持我国优势学科和交叉学科的重要前沿方向,以及从国家重大需求中凝练可望取得重大原始创新的研究方向,进一步提升我国主要学科的国际地位,提高科学技术满足国家重大需求的能力。各科学部遴选优先发展领域及其主要研究方向的原则是:  (1)在重大前沿领域突出学科交叉,注重多学科协同攻关,

理化所微尺度光波段Luneburg透镜研究取得进展

  近期,中国科学院理化技术研究所仿生智能界面科学中心有机纳米光子学实验室的科研团队在光学期刊《激光与光子评论》发表论文[Laser & Photonics Review. 10(4), 665-672 (2016), Three-dimensional Luneburg lens at o

超快光纤激光技术:基于多芯光纤的激光系统(一)

基于单芯光纤的激光放大器受限于自聚焦等非线性效应,在功率提升方面遭遇瓶颈。使用大模场面积光纤可以提升放大功率,但较大的模面积会引入高阶模式,在高泵浦功率下出现横模不稳定影响光斑质量。多路激光的相干合成是一种提升光纤单纤芯放大功率上限的方案,可以显著增加输出激光的平均功率,但不足之处在于需要相位反馈系

世界上第一台x射线激光诞生于

  1 X 射线光源与自由电子激光  光源是推动人类文明发展的利器,光源的每一次进步都极大地增强了人们认识和改变未知世界的能力并有力地推动了科学和技术的发展。X射线光源是人们观测物体内部结构、在分子与原子尺度上探测与认识物质内部微观构造与动态过程的不可替代的尖端装备。17 世纪初人类发明了望远镜和显

如何判断显微镜物镜的优劣

 显微镜光学系统的主要构件是显微镜物镜和目镜,其任务是放大,并获得清晰的图像,市场上显微镜物镜种类很多,究竟如何判断物镜的优劣呢?首先,我们先来认识下物镜。一.物镜的类型      显微镜物镜的优劣直接影响显微镜成象的质量,这与象差的校正有

显微镜的选购优劣

一.物镜的类型显微镜物镜的优劣直接影响显微镜成象的质量,这与象差的校正有关,因此,物镜是根据象差校正的程度分类的.在*透镜成象的象差分晰中已知:对映象质量影响zui大的是球面差、色差和象场弯曲,前二项对映象中央部分的清晰度有很大影响,而弯场弯曲对摄影边缘部分有极大影响。这里,就常用的几种物镜特性说明

声学超材料研究获进展

   近期,中科院力学所微重力重点实验室王育人团队在如何利用单相材料通过简单结构实现双负特性方面取得重要进展。该系列成果已发表在《科学报告》《应用声学》与《冲击与振动》等期刊上。图片来源网络由于奇异的物理特性,声学超材料在波定向控制与超分辨成像等领域有着广泛的应用前景。目前双负声

如何判断显微镜物镜的优劣(一)

显微镜光学系统的主要构件是显微镜物镜和目镜,其任务是放大,并获得清晰的图像,市场上显微镜物镜种类很多,究竟如何判断物镜的优劣呢?首先,我们先来认识下物镜。一.物镜的类型显微镜物镜的优劣直接影响显微镜成象的质量,这与象差的校正有关,因此,物镜是根据象差校正的程度分类的.在第一透镜成象的象差分晰中已知:

中红外实现飞秒激光脉冲 波长覆盖6.8-16.4μm波段

  扩展激光波长范围是光谱学的重要内容之一,得益于超快光学的快速发展,目前人们已产生了振荡频率覆盖从太赫兹、红外、可见、极紫外乃至X射线的相干辐射,极大地推进了光科学挑战极限的能力。特别是近年来在阿秒脉冲激光、光学频率梳、超强物理等研究中,红外飞秒激光作为取得新突破的基础和关键,引起了人们

物理所成功产生中红外波段高平均功率近周期飞秒激光脉冲

  扩展激光波长范围是光谱学的重要内容之一,得益于超快光学的快速发展,目前人们已产生了振荡频率覆盖从太赫兹、红外、可见、极紫外乃至X射线的相干辐射,极大地推进了光科学挑战极限的能力。特别是近年来在阿秒脉冲激光、光学频率梳、超强物理等研究中,红外飞秒激光作为取得新突破的基础和关键,引起了人们越来越广泛

干福熹:突破衍射极限的研究待加强

  “目前,信息技术已经进入纳米时代,其中纳米光学和光子学的发展尤为重要,例如在纳米光刻、纳米成像和纳米信息存储等信息技术中,都有很重要的应用。”   在近日于上海举行的以“突破光学衍射极限的机制及应用”为主题的第188期东方科技论坛上,中科院院士干福熹在题为《突破光学衍射极限,发展纳米光学和光子

太赫兹雷达技术(三)

3.2 目标散射特性建模与计算目标散射特性建模与计算是获取目标散射特性的有效方法。太赫兹频段实际目标一般应视为粗糙表面目标,表面细微结构散射较强不可忽略,且是超电大尺寸目标,这是太赫兹频段目标散射特性建模与计算的瓶颈问题。研究太赫兹频段目标特性可采用两种技术途径:一种是由微波/毫米波向上扩展,另一种

光芯片让一般显微镜具有纳米级分辨率

  新技术可以把普通的显微镜变成超分辨率纳米显微镜。  一个来自德国和挪威的物理学家团队研发出一种可使传统显微镜拥有纳米级分辨率的光芯片。研究人员声称:光芯片不仅为更多的人开启了使用纳米显微镜的大门,而且批量生产的光芯片将比当前依赖于复杂显微镜的纳米显微技术提供更大的视野范围。  纳米显微镜又称为超

透射电子显微镜的原理与演示

实验一 透射电子显微镜 的原理与演示 解剖、观察和分析历来是生物学研究的基本手段。用于细胞解剖观察的主要工具就是显微镜,它是我们观察细胞形态最常用的工具。但其分辨率的最小数值不会小于0.2mm(紫外光显微镜的分辨率也只能达到0.1mm), 这一数值是光学显微镜分辨率的极限。限制显微镜分辨率

X射线自由电子激光原理和生物分子结构测定研究中应用

  1 X射线的产生  X射线本质上是电磁波,其波长范围大致从0.01 nm 到 10 nm,与可见光(400—700 nm)不同,X 射线的短波长可以探测物质内部的精细结构,因此自从被伦琴发现以来就被用来观测物质的内部结构。随着人造 X射线光源的亮度和稳定性的提高,其应用范围涵盖物理、化学、生物、

物理所在表面等离激元的量子效率及传播调控方面取得进展

  表面等离激元是一种束缚在金属和介质材料交界面上的表面电磁波,这种电磁波与金属的振荡电荷相互耦合在一起向前传输,其场分布被束缚在亚波长尺寸之下,突破了经典光学中的衍射极限,可作为未来纳米光子器件和光子回路的信息载体。金属纳米线是一种基本的可以传输表面等离激元的准一维结构,可作为表面等离激元信号的传

显微镜的发展

显微镜是一种借助物理方法产生物体放大影像的仪器。最早发明于16世纪晚期,至今已有四百多年的历史。现在,它已经成为了一种极为重要的科学仪器,广泛地用于生物、化学、物理、冶金、酿造、医学等各种科研活动,对人类的发展做出了巨大而卓越的贡献。随着现代光电子技术和计算机的高速发展,显微测量技术在上业、国防、