蛋白质结构解析的方法简介

到目前为止,蛋白质结构解析的方法主要是两种,x射线衍射和NMR。近年来还出现了一种新的方法,叫做Electron Microscopy。其中X射线的方法产生的更早,也更加的成熟,解析的数量也更多,我们知道,第一个解析的蛋白的结构,就是用x晶体衍射的方法解析的。而NMR方法则是在90年代才成熟并发展起来的。这两种方法各有优点和缺点。首先来说一下,这两种方法的一般的步骤和各自的优点和缺点。电子显微镜(electron microscopy)作为一种新型的技术,目前的应用还是非常少,并且比较狭窄,我可能等到最后在给它作些介绍,而且相信绝大多数人也没有听说过,也不会有很大的兴趣。首先是X晶体衍射。首先要得到蛋白质的晶体。通常,都是将表达蛋白的基因PCR之后克隆到一种表达载体中,然后在大肠杆菌中诱导表达,提纯之后摸索结晶条件,等拿到晶体之后,工作便完成的80%,将晶体进行x射线衍射,收集衍射图谱,通过一系列的计算,很快就能得到蛋白质的原子......阅读全文

烘箱的结构简介

1、试验箱设计完美,箱体采用数控机床加工成型,操作容易;2、设有双层玻璃观察窗,供观察工作室状况之用;3、内胆为优质镜面不锈钢板,外壳为A3板喷塑处理,更显光洁、美观;4、电路系统侧采用门式开启,方便维护和检修;5、送风循环系统采用低噪音、长寿命、空调型美国进口风机,风轮为多翼式离心风叶。热风循环系

法氏囊的结构简介

  法氏囊采用石蜡切片、HE和免疫组织化学染色, 分别对健康10月龄非洲鸵鸟和45日龄固始鸡法氏囊解剖学和组织学结构进行观察和分析。非洲鸵鸟法氏囊覆盖于泄殖道和粪道后段的背侧,呈圆形囊状穹窿, 不形成真正的囊, 没有蒂。鸵鸟法氏囊黏膜面密集地分布着肉眼可见的小米粒状淋巴滤泡。显微镜下, 鸵鸟法氏囊淋

烘箱的结构简介

  1、试验箱设计完美,箱体采用数控机床加工成型,操作容易;  2、设有双层玻璃观察窗,供观察工作室状况之用;  3、内胆为优质镜面不锈钢板,外壳为A3板喷塑处理,更显光洁、美观;  4、电路系统侧采用门式开启,方便维护和检修;  5、送风循环系统采用低噪音、长寿命、空调型美国进口风机,风轮为多翼式

溶酶体的结构简介

  溶酶体呈圆形或卵圆形,大小不一,直径多数为0.2~0.8μm,小的只有0.05μm,大的可达数微米。它由厚7~10nm的单位膜包围,内含60余种酸性水解酶,包括蛋白酶、核酸酶、糖苷酶、脂酶、磷酸酶和硫酸酯酶等,但是通常不能在同一溶酶体内找到所有的酶不同类型细胞溶酶体所含酶的种类和数量也不同。溶酶

烘箱的结构简介

  1、试验箱设计完美,箱体采用数控机床加工成型,操作容易;  2、设有双层玻璃观察窗,供观察工作室状况之用;  3、内胆为优质镜面不锈钢板,外壳为A3板喷塑处理,更显光洁、美观;  4、电路系统侧采用门式开启,方便维护和检修;  5、送风循环系统采用低噪音、长寿命、空调型美国进口风机,风轮为多翼式

温度变送器的结构和原理解析

 温度变送器由量程单元和放大单元两部分组成。量程踩元由输入电路和反馈电路组成的线路板构成。量程单元因输入信号的不同而各不相同,有与直流毫伏、热电偶和热电阻三种输入方式相匹配的三种量程单元,而放大单元对三种输入通用。   直流毫伏信号可以由任何传感器或敏感元件所提供,直流毫伏量程单元比较简单,在将直流

关于蛋白质简介

  蛋白质是生命的第一要素,是构成一切细胞和组织结构必不可少的成分,并以不同形式参与维持生命的重要化学反应。生命的产生、存在与消亡,无不与蛋白质有关,故有人称蛋白质为“生命的载体”。恩格斯说:“蛋白质是生命的物质基础,生命是蛋白质存在的一种形式。”  构成蛋白质的基本单位是氨基酸,就像26个英文字母

蛋白质根据蛋白质结构进行分类

纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水

蛋白质二级结构预测-最邻近方法-NearestNeighboringmethods

早期,由于数据的缺乏,预测方法多基于单条序列。随着序列和结构数据的增加,人们的研究转向同源序列分析,充分利用隐藏在同源序列中的结构信息,使得结构预测的准确率得到了较大的提高。同源分析的基础是序列比较,通过序列比较发现相似的序列,根据相似序列具有相似结构的原理,将相似序列(或者序列片段)所对应的二级结

关于蛋白质结构的一级结构介绍

  蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的。各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。  迄今已有约一千种左右蛋白质的

蛋白质过多症的简介

  过多的蛋白质摄入,尤其是动物蛋白质摄入过多,都会对人体有害。一般情况下,人体不贮存蛋白质,所以必须将过多的蛋白质脱氨分解,氨则由尿排出体外。这一过程需要大量的水分,从而加重了肾脏的负荷,若肾脏功能本来不好,危险会更大。  过多的蛋白质摄入,也会造成含硫氨基酸摄入过多,这样会加速骨骼中钙的丢失,易

关于球状蛋白质的简介

  球状蛋白质,一类蛋白质,其多肽链所盘绕的立体结构为不同程度的球状分子,多肽链是通过链内的次级键,如氢键、盐键、二硫键、疏水作用和范德华力来维系其空间结构的。球状蛋白质有多种多样的生物功能,它溶于水且溶于稀的中性盐溶液中,如中性盐浓度过高,即从溶液中析出.这种现象称为盐析。加热也能使之沉淀或凝固.

关于抗冻蛋白质的简介

  这些多肽能保证这些物种在零下温度环境下生存。AFP结合到小的冰晶上,阻止冰的结晶化和晶体的生长,不然,将会对那些生命物种是致命的。越来越多的证据表明,AFP与哺乳动物细胞膜相互作用保护细胞膜不会被冻坏。关于不冻蛋白的研究提示ATF参与生物体对冷气候的适应过程。  不像广泛使用的汽车抗冻剂,乙二醇

关于蛋白质复性的简介

  包涵体复性,蛋白质折叠  如果变性条件剧烈持久,蛋白质的变性是不可逆的。如果变性条件不剧烈,这种变性作用是可逆的,说明蛋白质分子内部结构的变化不大。例如胃蛋白酶加热至80~90℃时,失去溶解性,也无消化蛋白质的能力,如将温度再降低到37℃,则又可恢复溶解性和消化蛋白质的能力。

蛋白质合成的过程简介

  1.氨基酸的活化与搬运:氨基酸的活化以及活化氨基酸与tRNA的结合,均由氨基酰tRNA合成酶催化完成。反应完成后,特异的tRNA3’端CCA上的2’或3’位自由羟基与相应的活化氨基酸以酯键相连接,形成氨基酰tRNA。  2.活化氨基酸的缩合——核蛋白体循环:活化氨基酸在核蛋白体上反复翻译mRNA

蛋白质分选的类型简介

  从蛋白质分选的转运方式和机制来看,可将蛋白质转运分为4类:  1、蛋白质的跨膜转运(transmembrane transport):主要是指在细胞质基质中合成的蛋白质转运到内质网、线粒体、质粒(包括叶绿体)和过氧化物酶体等细胞器,但进入内质网与线粒体、叶绿体和过氧化物酶体等细胞器的机制又有所不

精简解析蛋白质测定仪的工作原理

  蛋白质测定仪是根据蛋白质中氮的含量恒定的原理,通过测定样品中氮的含量从而计算蛋白质含量的仪器。   蛋白质测定仪的工作原理:   蛋白质测定仪以国际凯氏定氮法为依据,进行设计制造的,此仪器主机采用蒸气自动控制发生器,在液位稳压器的配合下,使蒸气在数十秒时间内平稳输出供蒸馏器使用。第一执行机关

蛋白质立体结构原则

1.由于C=O双键中的π电子云与N原子上的未共用电子对发生“电子共振”,使肽键具有部 分双键的性质,不能自由旋转。   2.与肽键相连的六个原子构成刚性平面结构,称为肽单元或肽键平面。但由于α-碳原子与其他原子之间均形成单键,因此两相邻的肽键平面可以作相对旋转。此单键的旋

羧酸的的结构简介

  羧酸的官能团是羧基,是由羰基和羟基(-OH)相连而成的。但羧酸的性质并不是羰基和羟基性质的加合,而是具有羧基自身的性质。杂化轨道理论认为,羧基中的碳原子是以Sp2杂化的。碳原子的3个Sp2杂化轨道分别与2个氧原子、1个羟基的碳原子或1个氢原子形成3个σ键,并处于同一平面上。羧基碳原子上未参与杂化

简述蛋白质结构在蛋白质设计中的应用

  蛋白质设计的目标是通过计算机辅助的算法以生成符合目标蛋白质三维结构的氨基酸序列,经过漫长的进化,自然界已经筛选出了数量众多的蛋白质,但天然蛋白质只有在自然条件下才发挥最佳功能,这使得人们利用这些蛋白质受到了限制,因此需要对蛋白质进行改造使其能适应特定条件发挥特定的功能。蛋白质分子的设计分为3类:

蛋白质结构是如何传递的

弗莱堡大学的研究人员正在将这种问题转移到蛋白质分析中,蛋白质是细胞的分子机制。由物理化学研究所的Thorsten Hugel教授,物理研究所的Steffen Wolf博士和Gerhard Stock教授领导的一组研究人员正在研究引起蛋白质结构变化的信号如何从一个网站到另一个。他们还试图确定这些机制发

蛋白质复合物的结构

蛋白质复合物的分子结构可以通过实验技术确定,例如X射线晶体学,单颗粒分析或核磁共振。蛋白质-蛋白质对接的理论选择也越来越多。是通常用于识别一个meomplexes方法是免疫沉淀。最近,Raicu及其同事开发了一种确定活细胞中蛋白质复合物的四级结构的方法。该方法基于确定像素级Förster共振能量转移

噬菌体的蛋白质结构介绍

  无尾部结构的二十面体:这种噬菌体为一个二十面体,外表由规律排列的蛋白亚单位——衣壳组成,核酸则被包裹在内部。  有尾部结构的二十面体:这种噬菌体除了一个二十面体的头部外,还有由一个中空的针状结构及外鞘组成的尾部,以及尾丝和尾针组成的基部。  线状体:这种噬菌体呈线状,没有明显的头部结构,而是由壳

简述黏蛋白的蛋白质结构

  成熟黏蛋白是由两个不同的区域:  氨基和羧基末端区域被轻度糖基化,且富含半胱氨酸。半胱氨酸残基参与建立二硫内和黏蛋白单体之间的联系。  的10〜80残基序列的多个串联重复序列,其中多达一半的形成的大的中央区域的氨基酸是丝氨酸或苏氨酸。这个区域被与数百饱和O-连接的寡糖。N-连接寡糖中也发现对粘蛋

关于蛋白质结构的内容介绍

  蛋白质结构是指蛋白质分子的空间结构。蛋白质主要由碳、氢、氧、氮等化学元素组成,是一类重要的生物大分子,所有蛋白质都是由20种不同氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。  蛋白质和多肽之间的界限并不是很清晰,有人基于发挥功能性作用的结构域所需的残基数认为,若残基数少于40

关于蛋白质结构的组成介绍

  一、化学组成:  (1)单纯蛋白质:仅含有AAs;  (2)结合蛋白质:由AAs和其他非蛋白质化合物所组成;  (3)衍生蛋白质:用化学或酶学方法得到的化合物。  二、分子组成:  基本单位:氨基酸 有不同的AAs通过肽键相互连接而成;  蛋白质→眎→胨→多肽→二肽→多肽→氨基酸。  三、元素组

关于蛋白质结构的分类介绍

  对蛋白质结构进行分类的方法有多种,有多个结构数据库(包括SCOP、CATH和FSSP)分别采用不同的方法进行结构分类。存放蛋白质结构的PDB数据库中就引用了SCOP的分类。对于大多数已分类的蛋白质结构来说,SCOP、CATH和FSSP的分类是相同的,但在一些结构中还有所区别。

关于蛋白质结构的类型介绍

  许多蛋白质都可以被分为多个结构组成单元,结构域就是这样一个组成单元。结构域一般可以自稳定,且常常独立进行折叠,而不需要蛋白质其他部分的参与;很多结构域都有自己独特的生物学功能。很多结构域并不是一个基因或基因家族对应蛋白质的独特结构单元,而往往是许多类蛋白质的共同结构单元。结构域常常是以其生物学功

蛋白质的种类和结构特点

蛋白质:亦称朊。一般分子量大于10000。蛋白质是生物体的一种主要组成物质,是生命活动的基础。各种蛋白质中氨基酸的组成、排列顺序、肽链的立体结构都不相同。已有多种蛋白质的氨基酸排列顺序和立体结构搞清楚了。蛋白质按分子形状可分为纤维状蛋白和球状蛋白。纤维蛋白如丝、毛、发、皮、角、蹄等,球蛋白如酶、蛋白

关于蛋白质结构肽键的介绍

  两个氨基酸可以通过缩合反应结合在一起,并在两个氨基酸之间形成肽键。而不断地重复这一反应就可以形成一条很长的残基链(即多肽链)。这一反应是由核糖体在翻译进程中所催化的。肽键虽然是单键,但具有部分的双键性质(由C=O双键中的π电子云与N原子上的未共用电子对发生共振导致),因此C-N键(即肽键)不能旋