蛋白质二级结构预测-最邻近方法NearestNeighboringmethods

早期,由于数据的缺乏,预测方法多基于单条序列。随着序列和结构数据的增加,人们的研究转向同源序列分析,充分利用隐藏在同源序列中的结构信息,使得结构预测的准确率得到了较大的提高。同源分析的基础是序列比较,通过序列比较发现相似的序列,根据相似序列具有相似结构的原理,将相似序列(或者序列片段)所对应的二级结构作为预测的结果。在Levitt等人建立的相似片段方法中,将待预测的片段与数据库中已知二级结构的片段进行相似性比较,利用打分矩阵计算出相似性得分,根据相似性得分以及数据库中的构象态,构建出待预测片段的二级结构。这一方法对数据库中同源序列的存在非常敏感,若数据库中有相似性大于30%的序列,则预测准确率可大大上升。另一种更为合理的方法是将待预测二级结构的蛋白质U与多个已知结构的同源序列Ti进行多重比对,对于U的每个残基位置,其构象态由多个同源序列对应位置的构象态决定,或取出现次数最多的构象态,或对各种可能的构象态给出得分值。 基于上述的策......阅读全文

蛋白质二级结构预测-最邻近方法-NearestNeighboringmethods

早期,由于数据的缺乏,预测方法多基于单条序列。随着序列和结构数据的增加,人们的研究转向同源序列分析,充分利用隐藏在同源序列中的结构信息,使得结构预测的准确率得到了较大的提高。同源分析的基础是序列比较,通过序列比较发现相似的序列,根据相似序列具有相似结构的原理,将相似序列(或者序列片段)所对应的二级结

蛋白质二级结构预测-综合各种分析方法预测

综合各种分析方法预测在实际进行蛋白质二级结构预测时,往往会综合应用各种分析方法和相关数据。综合方法不仅包括各种预测方法的综合,而且也包括结构实验结果、序列对比结果、蛋白质结构分类预测结果等信息的综合。实际应用中最常见的综合方法是同时使用多个软件进行预测,通过分析各个软件的特点以及各个软件预测结果,最

ChouFasman预测方法预测蛋白质二级结构

Chou-Fasman方法是一种基于单个氨基酸残基统计的经验参数方法,由Chou和Fasman在20世纪70年代提出来。通过统计分析,获得的每个残基出现于特定二级结构构象的倾向性因子,进而利用这些倾向性因子预测蛋白质的二级结构。每种氨基酸残基出现在各种二级结构中倾向或者频率是不同的,例如Glu主要出

蛋白质二级结构预测-人工神经网络方法

人工神经网络是一种复杂的信息处理模型。随着神经网络研究的兴起,科学家们也将神经网络用于生物信息学,其中包括二级结构的预测、蛋白质结构的分类、折叠方式的预测以及基因序列的分析等等。将神经网络用于二级结构预测的最早是由Qian和Sejnowskit提出的,他们受到神经网络在文字语言处理方面应用的启发,将

远紫外CD-预测蛋白质二级结构的方法

  利用圆二色光谱仪获得蛋白质CD 主要的工作包括:溶剂体系的选择,蛋白质溶液样品的制备[14 ] ,圆二色光谱仪实验参数的选择与调整等。对此,Kelly 等[15 ] 已经作了较为全面的综述。正确的蛋白质CD 图谱是预测蛋白质结构的基础与关键。在正确获得蛋白质CD 后,主要的工作是如何从CD 图谱

蛋白质二级结构预测-基于氨基酸疏水性的预测方法

这种方法是一种用物理化学方法进行二级结构预测的方法,或称为立体化学方法。在蛋白质中,氨基酸的理化性质对蛋白质的二级结构影响较大,因此在进行结构预测时考虑氨基酸残基的物理化学性质,如疏水性、极性、侧链基团的大小等,根据氨基酸残基各方面的性质及残基之间的组合预测可能形成的二级结构。“疏水性”是氨基酸的一

二级结构预测的

中文名称二级结构预测英文名称secondary structure prediction定  义预测大分子(核酸、蛋白质)可能具有的二级结构。现在已有多种计算机软件可以进行这类预测,如nnPREDICT、ZPRED Server等。应用学科生物化学与分子生物学(一级学科),方法与技术(二级学科)

蛋白质二级结构预测(protein-secondary-structure-prediction)

蛋白质二级结构的预测开始于20世纪60年代中期。二级结构预测的方法大体分为三代,第一代是基于单个氨基酸残基统计分析,从有限的数据集中提取各种残基形成特定二级结构的倾向,以此作为二级结构预测的依据。第二代预测方法是基于氨基酸片段的统计分析,使用大量的数据作为统计基础,统计的对象不再是单个氨基酸残基,而

蛋白质二级结构(protein-secondary-structure)预测软件

蛋白质二级结构的预测通常被认为是蛋白结构预测的第一步,二级结构是指α螺旋和β折叠等规则的蛋白质局部结构元件。不同的氨基酸残基对于形成不同的二级结构元件具有不同的倾向性。按蛋白质中二级结构的成分可以把球形蛋白分为全α蛋白、全β蛋白、α+β蛋白和α/β蛋白等四个折叠类型。预测蛋白质二级结构的算法大多以已

蛋白质的二级结构与超二级结构结构的组装块

一、蛋白质的二级结构  蛋白质在细胞中必须通过详细的三维结构识别成千上万种的不同分子,这就需要蛋白质分子具有结构多样性。蛋白质结构研究得出的第一个重要的基本规律是水溶性球状蛋白质分子折叠的重要驱动力,它是将疏水侧链置于分子内部,产生一个"疏水内核"和一个亲水表面。为了把侧链放到分子内部去,相应的高度

远紫外CD-预测二级结构存在的问题

随着基因工程与蛋白质工程的发展,人们迫切需要了解蛋白质的结构。CD 已经成为研究溶液中蛋白质二级结构的强有力工具,得到了越来越广泛的应用,然而远紫外CD 光谱预测蛋白质二级结构仍然存在一些不足之处。膜蛋白是近年来分子生物学研究的热点。膜蛋白是一类具有晶体类似结构的镶嵌于细胞膜上的蛋白,到目前为止,仅

蛋白质二级结构的定义

成氢键,这是稳定α-螺旋的主要键。 (4)肽链中氨基酸侧链R,分布在螺旋外侧,其形状、大小及电荷影响α-螺旋的形成。酸性或碱性氨基酸集中的区域,由于同电荷相斥,不利于α-螺旋形成;较大的R(如苯丙氨酸、色氨酸、异亮氨酸)集中的区域,也妨碍α-螺旋形成;脯氨酸因其α-碳原子位于五元环上,不易扭转,加之

蛋白质序列分析和结构预测

【实验目的】1、掌握蛋白质序列检索的操作方法;2、熟悉蛋白质基本性质分析;3、熟悉基于序列同源性分析的蛋白质功能预测,了解基于motif、 结构位点、结构功能域数据库的蛋白质功能预测;4、了解蛋白质结构预测。【实验内容】1、使用Entrez或SRS信息查询系统检索人脂联素 (adiponectin)

蛋白质序列分析和结构预测

【实验目的】   1、掌握蛋白质序列检索的操作方法;  2、熟悉蛋白质基本性质分析;  3、熟悉基于序列同源性分析的蛋白质功能预测,了解基于motif、结构位点、结构功能域数据库的蛋白质功能预测;  4、了解蛋白质结构预测。【实验内容】   1、使用Entrez或SRS信息查询系统检索人脂联素(ad

蛋白质结构预测(protein-structure-prediction)

一种生物体的基因组规定了所有构成该生物体的蛋白质,基因规定了组成蛋白质的氨基酸序列。虽然蛋白质由氨基酸的线性序列组成,但是,它们只有折叠成特定的空间构象才能具有相应的活性和相应的生物学功能。了解蛋白质的空间结构不仅有利于认识蛋白质的功能,也有利于认识蛋白质是如何执行其功能的。确定蛋白质的结构对于生物

蛋白质的二级结构的特点

二级结构以往是由生物巨分子在原子量级结构下的氢键来定义的。在蛋白质,二级结构则是以主链中氨基之间的氢键模式来定义,亦即DSSP所定义的氢键,并不包括主链与旁链间或是旁链之间的氢键。而核酸的二级结构是以碱基之间的氢键来定义。在很多RNA分子,二级结构对RNA正常功能非常重要,有时甚至于较序列重要。这可

概述蛋白质二级结构的形式

  蛋白质二级结构的基本类型有α螺旋、β折叠、β转角、Ω环和无规卷曲。如血红蛋白和肌红蛋白中含有大量的α-螺旋,铁氧蛋白(ferredoxin)则不含任何的α螺旋。蛋白质中各种类型的二级结构并不是均匀地分布在蛋白质中,不同蛋白质中β折叠和β-转角的数量也有很大的变化。

蛋白质二级结构拟合算法

早期的蛋白质或多肽的二级结构拟合计算方法中,主要采用多聚氨基酸为参考多肽。Greenfield 等采用多聚L2赖氨酸作参考多肽,建立α2螺旋、β2折叠及无规卷曲等二级结构参考CD 光谱曲线,采用单一波长法(208nm) 计算出α2螺旋含量后,然后假设不同的β2折叠含量( Xβ) 值,并假设CD 值是

蛋白质二级结构的基本介绍

  蛋白质二级结构(secondary structure of protein)是指多肽主链骨架原子沿一定的轴盘旋或折叠而形成的特定的构象,即肽链主链骨架原子的空间位置排布,不涉及氨基酸残基侧链。蛋白质二级结构的主要形式包括α-螺旋、β-折叠、β-转角、Ω环和无规卷曲。 [1] 由于蛋白质的分子量

关于蛋白质二级结构的定义

  蛋白质分子的二级结构(secondarystructure)通常是指蛋白质多肽链沿主链骨架方向的空间走向、规则性循环式排列,或某一段肽链的局部空间结构,即蛋白质的二级结构为肽链主链或一段肽链主链骨架原子的相对空间盘绕、折叠位置,它并不涉及氨基酸残基侧链的构象。

蛋白质二级结构的红外检测

  蛋白质是与生命及各种形式的生命活动紧密联系在一起的物质,机体中的每一个细胞和所有重要组成部分都有蛋白质的参与。蛋白质是由不同氨基酸以肽键相连所组成的具有一定空间结构的生物大分子物质,其结构可分为以下4个结构层次:   图1 蛋白质的四个结构层次   我们所关注的蛋白质二级结构指的是蛋白质

远紫外CD分析蛋白质二级结构

一、 远紫外CD分析蛋白质二级结构  远紫外CD分析蛋白质二级结构的方法,主要是运用计算机采用一定的拟合算法对CD数据进行加工处理,进而解析蛋白质二级结构。远紫外区CD光谱主要反映肽键的圆二色性。在蛋白质或多肽的规则二级结构中,肽键是高度有规律排列的,其排列的方向性决定了肽键能级跃迁的分裂情况。单一

关于蛋白质二级结构的β转角简介

  多肽链中出现的180°回折的结构称为β转角(β-bend)或β回折(β-turn),即U型转折结构。它是由四个连续氨基酸残基构成,第2个氨基酸残基多为脯氨酸,甘氨酸、天冬氨酸、天冬酰胺也常出现在β转角结构中,第一个氨基酸残基的羰基与第四个氨基酸残基的亚氨基之间形成氢键以维持其稳定。  常见的转角

简述蛋白质二级结构的无规卷曲

  多肽链中肽平面的一些无规则排列的无规律构象,称为无规卷曲(randomcoil)。无规卷曲通过主链间的氢键或主链与侧链间的氢键稳定其构象,是蛋白质结构中的基本构件。卷曲的柔性构象可使肽链改变走向,利于连接结构相对刚性的α螺旋和β折叠,在蛋白质肽链的卷曲、折叠过程中起重要作用。

蛋白质序列分析和结构预测实验

实验步骤 1.  人脂联素蛋白质序列的检索(1)调用Internet浏览器并在其地址栏输入Entrez网址(http://www.ncbi.nlm.nih.gov/Entrez);(2)在Search后的选择栏中选择protein;(3)在输入栏输入homo sapiens adiponectin;

蛋白质序列分析和结构预测实验

实验步骤1.  人脂联素蛋白质序列的检索(1)调用Internet浏览器并在其地址栏输入Entrez网址(http://www.ncbi.nlm.nih.gov/Entrez);(2)在Search后的选择栏中选择protein;(3)在输入栏输入homo sapiens adiponectin;(

蛋白质序列分析和结构预测实验

蛋白质序列分析和结构预测实验             实验步骤 1.  人脂联素蛋白质序列的检索(1)调用Internet浏览器并在其

蛋白质三级机构(空间结构)预测-从头预测法

H-P模型是基于三种简化的,即蛋白质中各个氨基酸残基的α碳原子都位于二维网格或三维网格的格点上,疏水作用是蛋白折叠中唯一的重要因素,同时通过计算疏水残基接触的数目代替构象的能量计算。虽然这样的处理非常简单,但是,通过H-P模型的计算分析,能够发现蛋白质折叠的一些机制。如果在蛋白质模型中取消氨基酸定位

关于蛋白质二级结构的β折叠的介绍

  β折叠是指多肽链以肽单元为单位,以Cα为旋转点形成伸展的锯齿状折叠构象,又称3片层(3-strand)结构,具有下列特征。  (1)肽链折叠成伸展的锯齿状,肽单元间的夹角为110°,氨基酸残基的R侧链分布在片层的上下。  (2)两条以上肽链(或同一条多肽链的不同部分)平行排列,相邻肽链之间的肽键

关于蛋白质二级结构的α螺旋的介绍

  蛋白质分子中多个肽平面通过氨基酸a-碳原子的旋转,使多肽主链各原子沿中心轴向右盘曲形成稳定的α螺旋(a-helix)构象。 α螺旋具有下列特征:  (1)多肽链以肽单元为基本单位,以Cα为旋转点形成右手螺旋,氨基酸残基的侧链基团伸向螺旋的外侧。  (2)每3.6个氨基酸旋转一周,螺距为0.54n