紫外可见光谱法测定中的随机误差

随机误差是由一些难以控制的偶然因素造成的,故又称偶然误差。其误差的大小和符号不定,且不遵循任何规律,所以又称为不定误差。造成随机误差的原因可能是与分析人员无关的外部因素(如温度和湿度的波动、空气污染、建筑物振动等)造成的,也可能是分析人员粗心大意造成的。 任何分析测定都会有随机误差。与系统误差相反,随机误差是不可预防的,也不能用校正来消除。但操作细 心,或增加重复测定的次数可减少随机误差。 随机误差在各项测量中是随机变量,从单个来看它是无规律性的,但就其总体来说,随着测量次数的增加,导致它们的总和有正负相消的机会,zui后其平均值趋近于零。因而,多次测量的平均值的随机误差要比单个测量值的随机误差小。这种抵偿性正是统计规律的表现。因此,随机误差可以用概率统计的方法来处理。如果采用数理统计方法进行处理,就会发现随机误差遵循正态分布规律。 由此可见,系统误差和随机误差性质不同,处理方法......阅读全文

紫外可见光谱法测定中的随机误差

  随机误差是由一些难以控制的偶然因素造成的,故又称偶然误差。其误差的大小和符号不定,且不遵循任何规律,所以又称为不定误差。造成随机误差的原因可能是与分析人员无关的外部因素(如温度和湿度的波动、空气污染、建筑物振动等)造成的,也可能是分析人员粗心大意造成的。  任何分析测定都会有随机误差。与系统误差

紫外可见吸收光谱法

分子的紫外-可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构

紫外可见吸收光谱法的特点

1、紫外可见吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。2、由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。3、紫外

紫外可见吸收光谱法的应用

利用紫外光谱可以推导有机化合物的分子骨架中是否含有共轭结构体系,如C=C-C=C、C=C-C=O、苯环等。利用紫外光谱鉴定有机化合物远不如利用红外光谱有效,因为很多化合物在紫外没有吸收或者只有微弱的吸收,并且紫外光谱一般比较简单,特征性不强。利用紫外光谱可以用来检验一些具有大的共轭体系或发色官能团的

紫外可见吸收光谱法的特点

1、紫外可见吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。2、由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。3、紫外

紫外可见吸收光谱法的仪器组成

紫外可见吸收光谱仪由光源、单色器、吸收池、检测器以及数据处理及记录(计算机)等部分组成普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成.为得到全波长范围(200~800-nm)的光,使用分立的双光源,其中氘灯的波长为185~395 nm,钨灯的为350~800nm.绝大

紫外可见吸收光谱法的仪器组成

紫外可见吸收光谱仪由光源、单色器、吸收池、检测器以及数据处理及记录(计算机)等部分组成普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成.为得到全波长范围(200~800-nm)的光,使用分立的双光源,其中氘灯的波长为185~395 nm,钨灯的为350~800nm.绝大

紫外可见吸收光谱法的仪器组成

紫外可见吸收光谱仪由光源、单色器、吸收池、检测器以及数据处理及记录(计算机)等部分组成普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成.为得到全波长范围(200~800-nm)的光,使用分立的双光源,其中氘灯的波长为185~395 nm,钨灯的为350~800nm.绝大

紫外可见吸收光谱法的仪器组成

紫外可见吸收光谱仪由光源、单色器、吸收池、检测器以及数据处理及记录(计算机)等部分组成普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成.为得到全波长范围(200~800-nm)的光,使用分立的双光源,其中氘灯的波长为185~395 nm,钨灯的为350~800nm.绝大

紫外可见吸收光谱法的仪器组成

紫外可见吸收光谱仪由光源、单色器、吸收池、检测器以及数据处理及记录(计算机)等部分组成普通紫外可见光谱仪,主要由光源、单色器、样品池(吸光池)、检测器、记录装置组成.为得到全波长范围(200~800-nm)的光,使用分立的双光源,其中氘灯的波长为185~395 nm,钨灯的为350~800nm.绝大

紫外可见吸收光谱法的工作原理

紫外-可见吸收光谱的产生及基本原理2.1 物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法。当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的能量传递到了分子上。这样,处于稳定状态的基态分子就会跃迁到不稳定的高能态,即激发

紫外可见吸收光谱法的基本原理

紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有:(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道(2)n→σ* 跃迁 指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁(3)π→π* 跃迁 指不饱和键中的π电子吸收光波能量

紫外可见吸收光谱法的基本原理

紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有:(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道(2)n→σ* 跃迁 指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁(3)π→π* 跃迁 指不饱和键中的π电子吸收光波能量

紫外可见吸收光谱法的基本原理

紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有:(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道(2)n→σ* 跃迁 指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁(3)π→π* 跃迁 指不饱和键中的π电子吸收光波能量

紫外可见光谱法在材料耐老化性能检测中的应用

对树脂(乳液)及涂料的耐候性能的测试,采取的主要手段是在紫外老化机中进行加速老化试验,辅之以天然曝晒试验,试验周期长。根据涂料老化机理,主要是涂层吸收紫外光后发生光化学降解反应,使涂膜失光、变色、粉化、变脆、龟裂直至脱落。因此,树脂清漆对紫外光的吸收和老化有着密切的关系,所以我们开展了树脂清漆的紫外

红外吸收光谱法和紫外可见分子吸收光谱法的区别

1、吸收的波长不一样。红外吸收光谱法中,样品吸收的是红外波段的电磁辐射;紫外可见光谱法中,样品吸收的是紫外-可见波段的电磁辐射。2、仪器原理有区别。红外光谱法应用的是傅立叶变换红外光谱,红外光经过迈克尔逊干涉仪发生干涉后照射样品,采集到样品的干涉图再经过傅立叶变换得到样品的光谱; 而紫外-可见吸收光

红外吸收光谱法和紫外可见分子吸收光谱法的区别

1、吸收的波长不一样。红外吸收光谱法中,样品吸收的是红外波段的电磁辐射;紫外可见光谱法中,样品吸收的是紫外-可见波段的电磁辐射。2、仪器原理有区别。红外光谱法应用的是傅立叶变换红外光谱,红外光经过迈克尔逊干涉仪发生干涉后照射样品,采集到样品的干涉图再经过傅立叶变换得到样品的光谱; 而紫外-可见吸收光

紫外可见分光光度法测定食品中甜蜜素

用乙酸乙酯在酸性条件下提取食品中的甜蜜素,再以碱性水反提取,加入过量的次氯酸钠将甜蜜素转变为N,N-二氯环己胺,溶于环己烷\[4],在波长304nm处测定。 仪器和试剂: 754紫外分光光度计为上海第二光学仪器厂产品;乙酸乙酯、环己烷、10%(φ)硫酸、0.1mol/L氢氧化钠、20g/L次氯酸钠溶

紫外可见分光光度法测定食品中的苏丹红Ⅲ

苏丹红Ⅲ号是一种人工合成的化工染料,化学名称为1-[4-(苯基偶氮)]偶氮-2-萘酚。苏丹红Ⅲ号为致癌物质[1,2],被禁止作为食品添加剂使用。我国和欧盟标准检测方法为液相色谱法[3,4],许多分析化学工作者对苏丹红染料的测定开展了研究,建立了一些有价值的测定方法,如HPLC法[5-7]、分子印迹固

紫外可见分光光度计测定水果汁中的果糖

果糖的测定法有高效液相色谱法、离子选择电极法、傅里叶变换近红外光谱法和分光光度法等,前三种方法的操作都较复杂,而分光度法报道的方法中均加入显色剂,如间苯二酚,铁氰化钾等,这些物质对环境有污染。占达东通过1 14研究发现:果糖在盐酸的作用下可生成羟甲基糠醛,通过对果糖在盐酸介质中的吸收光谱进行扫描,发

食品中防腐剂的测定紫外可见分光光度法

食品中防腐剂的测定-紫外可见分光光度法一、实验目的1、了解紫外可见分光光度计仪器的基本结构和原理;2、学会紫外可见分光光度计仪器的操作技术;3、了解食品中防腐剂的测定意义;4、学会用此法测定山梨酸。二、基本原理用三氯甲烷从样品中提取出山梨酸,再以碳酸氢钠提取,使山梨酸形成钠盐溶于水溶液中,山梨酸钠水

紫外--可见分光光度法测定酸奶中维生素A

酸奶是一种发酵奶制品,由于其丰富的营养成分以及独特的风味、口感而深受人们的喜爱。酸奶中含有一定量的维生素A,作为人体必需的营养元素,分析测定维生素A的含量具有重要的意义。目前分析维生素A的方法很多,有荧光分光光度法、气相色谱洁、高压液相色谱法、可见分光光度法。其中比较常用的是采用三氯化锑作为显色剂的

红外吸收光谱法和紫外可见光谱法有什么不同地点

紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如ne、he、o2、h2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚

实验室分析方法紫外和可见光谱法概述

紫外和可见光谱(ultraviolet and visible spectrum)简写为UV。紫外吸收光谱是由于分子中的价电子的跃迁而产生的。分子中价电子经紫外或可见光照射时,电子从能级跃迁到高能级,此时电子就吸收了相应波长的光,这样产生的吸收光谱叫紫外光谱。紫外吸收光谱的波长范围是100-400m

随机误差(3)

抽样误差在随机误差中,最重要的是抽样误差。我们从同一总体中随机抽取若干个大小相同的样本,各样本平均数(或平均率)之间会有所不同。这些样本间的差异,同时反映了样本与总体间的差异。它是由于从总体中抽取样本才出现的误差,统计上称为抽样误差(或抽样波动)。例如,抽样误差在医学生物实验中最主要的来源是个体的变

随机误差(4)

统计规律测量值的随机误差分布规律有正态分布、t分布、三角分布和均匀分布等,但测量值大多数都服从正态分布,在此主要以正态分布为主进行介绍。测量值的随机误差δ是随机变量,它的概率分布密度函数为:P(δ)=exp[-δ^2/(2*σ^2)]/[σ√(2*pi)]式中 exp()表示以e为底的指数函数,pi

随机误差(1)

随机误差也称为偶然误差和不定误差,是由于在测定过程中一系列有关因素微小的随机波动而形成的具有相互抵偿性的误差。其产生的原因是分析过程中种种不稳定随机因素的影响,如室温、相对湿度和气压等环境条件的不稳定,分析人员操作的微小差异以及仪器的不稳定等。随机误差的大小和正负都不固定,但多次测量就会发现,绝对值

随机误差(2)

特征即使测试系统的灵敏度足够高,在相同的测量条件下,对同一量值进行多次等精度测量时,仍会有各种偶然的,无法预测的不确定因素干扰而产生测量误差,其绝对值和符号均不可预知。虽然单次测量的随机误差没有规律,但多次测量的总体却服从统计规律,通过对测量数据的统计处理,能在理论上估计起对测量结果的影响。随机误差

紫外可见分光光度法在重金属的测定中的应用

  食品重金属污染问题已引起全世界的高度重视和深入研究。  在国家标准中规定了食品添加剂中砷的测定方法,采用二乙氨基二硫代甲酸银比色法;铅的测定采用双硫腙比色法。  朱寿民采用高频电场激发氧灰化溴代卟啉分光光度法, 测定了鄱阳湖野生藜蒿中铅的含量。在碱性介质中, 铅与溴代卟啉试剂形成橙黄色配合物, 

紫外可见吸收光谱的紫外光谱

各种因素对吸收谱带的影响表现为谱带位移、谱带强度的变化、谱带精细结构的出现或消失等。谱带位移包括蓝移(或紫移,hypsochromic shift or blue shift))和红移(bathochromic shift or red shift)。蓝移(或紫移)指吸收峰向短波长移动,红移指吸收峰