Antpedia LOGO WIKI资讯

研究在构建大规模异构生物分子关联网络取得进展

中国科学院新疆理化技术研究所多语种信息技术研究室研究生郭镇豪、易海成在研究员尤著宏的指导下,开展的关于大规模异构生物分子关联网络的研究“Construction and Comprehensive Analysis of a Molecular Association Network via lncRNA-miRNA-Disease-Drug-Protein Graph”(《构建及综合分析基于长非编码RNA-微小RNA-环状RNA-信使RNA-微生物-疾病-药物-蛋白质的生物分子关联网络》)于近日发表在Cells杂志上。 该工作在国际学术界首次提出了生物分子关联网络(Molecular Association Network,MAN)的定义,MAN网络系统地集成了8种不同类型的生物分子(包括lncRNA、miRNA、circRNA、mRNA、microbe、disease、drug及protein)及18种关联关系(包括m......阅读全文

国家基金委八大学部公布“优先发展领域及主要研究方向”

  “十三五”期间,通过支持我国优势学科和交叉学科的重要前沿方向,以及从国家重大需求中凝练可望取得重大原始创新的研究方向,进一步提升我国主要学科的国际地位,提高科学技术满足国家重大需求的能力。各科学部遴选优先发展领域及其主要研究方向的原则是:  (1)在重大前沿领域突出学科交叉,注重多学科协同攻关,

4D组学新时代!更精确的磷酸化修饰组学

离子淌度分离概念的引入使得蛋白质组学进入了4D新时代。4D蛋白质组学是在3D分离即保留时间(retention time)、质荷比(m/z)、离子强度(intensity)这三个维度的基础之上增加了第四个维度,离子淌度(mobility)的分离(图1),进而大幅度的提高扫描速度和检测灵敏度,带来蛋白

脂质体学的最终边界:不饱和脂类异构物的深度分析

  脂质是重要的生物分子,参与了生物体中重要的生理功能,例如细胞讯息传递、能量平衡、脏器保护,并受到生物体新陈代谢所调控。生物体的脂肪代谢失衡,将会改变细胞环境,进而连结到疾病状态,例如癌症、阿兹海默症、心血管疾病等。脂质分子的种类多样,多数的脂类分子具有疏水性长碳链,其碳链上具有数目不等的不饱和碳

拉曼光谱技术综述

   【摘要】本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。综述了近年来了曼技术的主要的分析技术。涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。  1、拉曼光谱的发展简史  印度物理学家拉曼于1928年

《自然-通讯》华东理工在可见光控分子开关领域取得的突破

  光控分子开关的开发及应用研究过程中,全可见光调控一直是人们关注的焦点。常规光控分子开关通常需要在紫外光激发条件下进行光调控操作,紫外光激发存在高耗能、损伤大(光副反应)、穿透性差以及光源相对较贵的缺点,长期使用紫外光激发会导致分子开关的稳定性受损(副产物积累,光致异构可逆性下降)以及相应材料基质

激光拉曼光谱法的应用

激光拉曼光谱法的应用有以下几种:在有机化学上的应用、在高聚物上的应用、在生物方面上的应用、在表面和薄膜方面的应用。 在有机化学上的应用拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是确定化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。

激光拉曼光谱仪简介 (2008/5/13)

激光拉曼光谱法是以拉曼散射疚为理论基础的一种光谱分析方法。    激光拉曼光谱法的原理是拉曼散射效应。拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频

需求推动进步,质谱让人类生活更美好

  ——访安捷伦质谱事业部高级市场总监David Edwards、浙江大学潘远江教授  分析测试百科网讯 生命与健康研究是近些年诸多方向的关注热点,与个人基因、环境与生活习惯差异密切相关。随着分析技术发展的带动,生命与健康研究的深度亦不断被拓展:暴露组学、代谢组学、代谢流、多组学整合及结合分子生物学

青岛能源所在超宽带隙共轭聚合物研究中取得进展

  有机半导体材料主要应用于有机场效应晶体管(OFET)、本体异质节太阳能电池(BHJ-OPV)、有机电致发光材料(OLED)以及传感器等,其结构便于设计、性能易于调控,以及可用于制备柔性电子器件等独特优势,吸引了科学界的广泛关注,是未来国家材料以及能源发展的重要方向之一。含有内酰胺官能团的异靛蓝分

“干细胞及转化研究”等6个重点专项2018年项目申报发布

  5月22日,科技部官网发布了《关于对国家重点研发计划干细胞及转化研究等6个重点专项2018年度项目申报指南征求意见的通知》,其中,“干细胞及转化研究”重点专项、“蛋白质机器与生命过程调控”重点专项、“纳米科技”重点专项 与生物医学领域相关。  关于对国家重点研发计划干细胞及转化研究等6个重点专项

DPI技术-“分子显微镜”

  DPI(Dual Polarization Interferometry)双偏振极化干涉分析技术是自2002年以后发展起来的用于对相互作用的分子之间的实时相互作用行为进行定性定量测量研究的工具。通过对两相或者多相分子相互作用界面层的的密度、厚度和表面浓度进行实时的、动态的定量测量来了解分子结构(

Science:铱催化Z式保留不对称烯丙基取代反应

  Z-烯烃是有机分子的基本结构单元,与E-烯烃相比,其热力学不稳定,因此,Z-烯烃的高选择性合成具有挑战性。含有Z-烯烃的手性结构单元广泛存在于天然产物和生物活性分子中,发展其高效精准合成方法具有重要意义(图1A)。近期,中国科学院上海有机化学研究所研究员游书力团队利用π-烯丙基铱物种反应特点,从

盘点:分子诊断常用技术50年的沿革与进步

  一、基于分子杂交的分子诊断技术  上世纪60年代至80年代是分子杂交技术发展最为迅猛的20年,由于当时尚无法对样本中靶基因进行人为扩增,人们只能通过已知基因序列的探针对靶序列进行捕获检测。其中液相和固相杂交基础理论、探针固定包被技术与cDNA探针人工合成的出现,为基于分子杂交的体外诊断方法进行了

一文读懂分子诊断技术、PCR技术、基因测序技术

  分子诊断技术是指以DNA和RNA为诊断材料,用分子生物学技术通过检测基因的存在、缺陷或表达异常,从而对人体状态和疾病作出诊断的技术。其基本原理是检测DNA或RNA的结构是否变化、量的多少及表达功能是否异常,以确定受检者有无基因水平的异常变化,对疾病的预防、预测、诊断、治疗和预后具有重要意义。通俗

DPI技术-“分子显微镜”

DPI(Dual Polarization Interferometry)双偏振极化干涉分析技术是自2002年以后发展起来的用于对相互作用的分子之间的实时相互作用行为进行定性定量测量研究的工具。通过对两相或者多相分子相互作用界面层的的密度、厚度和表面浓度进行实时的、动态的定量测量来了解分子结构(

拉曼光谱的7大应用及优缺点分析

  拉曼光谱技术以其信息丰富、制样简单、水的干扰小等独特优点,在化学、材料、物理、高分子、生物、医药、地质等领域有着广泛的应用。  1、拉曼光谱在化学研究中的应用  拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征或特征基团。拉曼位移的大小、

高分子、晶体、宝石、文物、生物、化学等七大领域的拉曼应用

  1、拉曼光谱在化学研究中的应用  拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征或特征基团。拉曼位移的大小、强度及拉曼峰形状是鉴定化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为分子异构体判断的依据。  在无机化合物中金属离子

拉曼光谱仪在各领域的应用

最近很多人都在找这个,我从网上整理一套比较全面的分享出来。节省大家的时间。拉曼光谱技术以其信息丰富,制样简单,水的干扰小等独特的优点,在化学、材料、物理、高分子、生物、医药、地质等领域有广泛的应用。1、拉曼光谱在化学研究中的应用拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它

奥谱天成:拉曼光谱的优势及应用

  红外光谱   拉曼光谱   共同点   给定基团的红外吸收波数与拉曼位移完全相同,两者均在红外光区,都反映分子的结构信息   产生的机理   振动引起偶极矩或电荷分布变化   电子云分布瞬间极化产生诱导偶极   入射光光源   红外光   紫外-近红外   光学原理   光

BCEIA 2013质谱分会报告(一)

  2013年10月23日,第十五届北京分析测试学术报告会暨展览会(BCEIA 2013)盛大开幕,吸引了来自国内外17个国家和地区的364家分析仪器厂商参加。展会同期在新世纪日航酒店举办以“分析科学创新未来”为主题的BCEIA 2013学术报告会,来自全国各地的专家学者出席了本届会议,质

世界最小光控单分子火车诞生

  华东理工大学费林加诺贝尔奖科学家联合研究中心在分子机器领域获得新进展,成功构建了世界最小光控单分子火车,相关研究成果日前发表于《细胞》杂志的首个化学类姐妹刊Chem上。  分子机器是指由分子尺度的物质构成、能行使某种机械运动或对外做功的功能性分子。然而,由于缺少相应的研究方法与手段,单个分子机器

手性的概念及手性物质分离的意义

一、手性及对映异构体的定义:物体与其镜像不能重叠的现象称为手性。 两种互为镜像关系且不能重叠的分子称为手性分子,又称对映异构体。二、手性分子的特点:手性分子的结构差别很小,具有相同的熔点、沸点、偶极矩、折光率和光谱性质等,与非手性试剂作用时,其化学性质一样,很难用一般的物理或化学方法区分。

手性的概念及手性物质分离的意义

一、手性及对映异构体的定义:        物体与其镜像不能重叠的现象称为手性。          两种互为镜像关系且不能重叠的分子称为手性

X射线自由电子激光原理和生物分子结构测定研究中应用

  1 X射线的产生  X射线本质上是电磁波,其波长范围大致从0.01 nm 到 10 nm,与可见光(400—700 nm)不同,X 射线的短波长可以探测物质内部的精细结构,因此自从被伦琴发现以来就被用来观测物质的内部结构。随着人造 X射线光源的亮度和稳定性的提高,其应用范围涵盖物理、化学、生物、

黄胜雄研究组阐明天然稀有弩箭子糖的生物合成机制

  天然糖类是活性天然产物的一个重要结构单元,糖苷化修饰有利于提高活性分子的生物相容性及靶点识别的特异性,迄今许多临床一线使用的药物如红霉素、阿霉素及万古霉素等都是糖苷类化合物。弩箭子糖(antiarose)是一类六碳脱氧糖,最初于1896年由水解剧毒木本植物见血封喉树汁液中的天然毒素——α-弩箭子

青年一辈展风采| 2019北京波谱年会青年论坛

  由北京理化分析测试技术学会波谱专业委员会主办,中国科学院大学协办的“2019年度北京波谱年会”在在中国科学院大学(雁西湖校区)召开(相关报道:发展核心动力 波谱人欢聚一堂 | 2019北京波谱年会召开)。在第一天精彩的会议报告后(相关报道:波谱当自强 经验互分享 | 2019北京波谱年会精彩不断

蛋白质浓缩和溶质的去除实验

预计在新奇的一级分子和生物仿制药实体方面将会有突出的增长。一些进步的是改良的分析、开发和相互作用。现在已有许多用于去除關的方法,包括冻干、反向萃取、溶质析出,precipitation、透析(溶剂交换) 、超滤和层析技术。值得注意的是,在众多微和设备发展的支持下,小型化和高通量的蛋白质分析取得了极大

有关TILLING技术介绍及相关的文献下载

TILLING 技术是于上个世纪 90年代末期,美国 Fred Hutchinson癌症研究中心基础科学研究所的 Steven Henikoff领导的研究小组发展起来的( 1)。目前, TILLING技术作为种研究方法已经应用于多种生物中,如拟南芥、玉米、水稻、百脉根、小鼠、斑马鱼、果蝇、线虫等。对

“十三五”第一批26个重大项目指南正式发布

  近日,国家自然科学基金委员会发布了《关于发布“十三五”第一批重大项目指南及申请注意事项的通告》。《通告》表示,国家自然科学基金委员根据6月发布的《国家自然科学基金“十三五”发展规划》优先发展领域,发布了“十三五”第一批26个重大项目指南。  6月,《自然科学基金委“十三五”发展规划》(以下简称“

Science:生物钟为何是二十四小时

  众所周知,为了适应地球自转引起的昼夜改变(尤其是光强和温度),地球生物会通过生物钟调控自己的活动。生物钟周期与地球自转周期相符,大约是24小时。那么,这个周期到底是怎样决定并执行下来的呢?  日本分子科学研究所 (IMS)的科学家们发现,地球的自转周期(24小时)铭刻在生物钟蛋白KaiC的原子结