X荧光光谱分析仪的发展趋势

之前说过了X荧光光谱分析的发展,主要是从X射线发现到现今X荧光光谱分析技术的应用之间的发展历程。而在将来,X荧光光谱分析仪的发展又是会怎么样的趋势呢? 在未来的数年,由于材料科学、空间技术、生物医学、环境化工等学科的发展,X射线荧光分析技术将更加深入和广泛。随着新仪器、新技术的不断出现,XRF分析技术将会体现在以下几方面的发展: 1、多功能化 为了提高工作效率,降低分析成本,新一代X射线荧光光谱仪正朝着多功能方向发展。不但能对常规大面积样品进行高灵敏度的元素分析,还可对微小区域分析、区域元素含量分布成像、某些化学成分的物相分析。如用于分析元素价态及配位状况的X射线吸收光谱分析;可弥补扫描电子显微镜和能谱分析不足的X射线荧光微区面分布元素成像分析等。 2、小型与专用化体积 随着现代电子技术的发展,仪器功能那个模块有高度集成化的趋势,且采用小功率X光管,减少水冷系统,从而大大减少仪器、由于现场分析和高温、高压、强磁场等......阅读全文

X射线荧光光谱和荧光光谱-区别

一、理论上。荧光光谱是比较宽的概念,包括了X射线荧光光谱。二、从仪器分析上,荧光光谱分析可以分为:X射线荧光光谱分析、原子荧光光谱分析,1)X射线荧光光谱分析——发射源是Rh靶X光管2)原子荧光光谱分析——可用连续光源或锐线光源。常用的连续光源是氙弧灯,常用的锐线光源是高强度空心阴极灯、无极放电灯、

x射线衍射、x荧光、直读光谱区别

1、X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域.  X射线衍射仪是利用X射线衍射原理研究物质内部微观结构的一种大型分析仪器,广泛应用于各大、专院校,科研院所及厂矿企业.  基

X射线荧光光谱原理

  X射线荧光光谱分析在20世纪80年代初已是一种成熟的分析方法,是实验室、现场分析主、次量和痕量元素的方法之一。  X射线荧光光谱仪(XRF)是利用原级X射线或其他光子源激发待测物质中的原子,使之产生荧光(次级X射线),从而进行物质成分分析的仪器。X射线荧光光谱仪又称XRF光谱仪,有波长色散型和能

X荧光光谱的初识

XRF是一种确定各种材料化学组成的一种分析方法。被测材料可以是固体、液体、粉末或其它形式。XRF还可测定镀层和薄膜的厚度及成分。XRF具有分析速度快、准确度高、不破坏样品及样品前处理简单等特点。应用范围广泛,涉及金属、水泥、油品、聚合物、塑料、食品以及矿物、地质和环境等领域,在医药研究方面,XRF也

X荧光光谱仪原理

X荧光光谱仪原理当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12~10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较

X射线荧光光谱的概念

X射线荧光光谱(XRF):X射线荧光光谱按 分 离 特 征 谱 线 的 方 法 分 为 波 长 色 散 型(WD-XRF)和 能 量 色 散 型(ED-XRF)两种。WD-XRF与ED-XRF的区别在于前者是用分光晶体将荧光光束进行色散,而后者则是借助高分辨率敏感半导体检测器与多道分析器将所得信号按

什么是X射线荧光光谱

X射线荧光光谱(XRF):X射线荧光光谱按 分 离 特 征 谱 线 的 方 法 分 为 波 长 色 散 型(WD-XRF)和 能 量 色 散 型(ED-XRF)两种。WD-XRF与ED-XRF的区别在于前者是用分光晶体将荧光光束进行色散,而后者则是借助高分辨率敏感半导体检测器与多道分析器将所得信号按

x荧光光谱仪原理

荧光,顾名思义就是在光的照射下发出的光。X射线荧光就是被分析样品在X射线照射下发出的X射线,它包含了被分析样品化学组成的信息,通过对上述X射线荧光的分析确定被测样品中各组份含量的仪器就是X射线荧光分析仪。从原子物理学的知识我们知道,对每一种化学元素的原子来说,都有其特定的能级结构,其核外电子都以各自

X荧光光谱仪特点

 X荧光光谱仪特点:   1、无损检测,可对电子电气设备,玩具指令中的有害物质进行定性定量分析。   2、测量时间短,客户可选择测试时间:60-300秒。   3、全封闭式金属机箱及防泄漏保护开关设计,更好地保障操作员的人身安全。流水线型外观,美观大方。   4、配备X Y轴可移动平台,方便样品点选

X射线荧光光谱法

方法提要用Li2B2O7和NaBO2混合溶剂,将钨精矿粉和纯WO3作高倍稀释熔融制成玻璃片,按WLα分析线X射线荧光光谱仪测定其强度值,换算成相对强度即可得出试样中三氧化钨的含量。此法适用于钨精矿中w(WO3)为0.5%~80%的试样。仪器波长色散X射线荧光光谱仪器仪,铑靶X光管(≥3kW)。高温熔

X-射线荧光光谱仪

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。图

X荧光光谱仪原理

  当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12~10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程   称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较外层

X射线荧光光谱法

方法提要用Li2B2O7和NaBO2混合溶剂,将钨精矿粉和纯WO3作高倍稀释熔融制成玻璃片,按WLα分析线X射线荧光光谱仪测定其强度值,换算成相对强度即可得出试样中三氧化钨的含量。此法适用于钨精矿中w(WO3)为0.5%~80%的试样。仪器波长色散X射线荧光光谱仪器仪,铑靶X光管(≥3kW)。高温熔

X射线荧光光谱仪荧光光谱的相关介绍

  能量色散X射线荧光光谱采用脉冲高度分析器将不同能量的脉冲分开并测量。能量色散X射线荧光光谱仪可分为具有高分辨率的光谱仪,分辨率较低的便携式光谱仪,和介于两者之间的台式光谱仪。高分辨率光谱仪通常采用液氮冷却的 半导体探测器,如Si(Li)和高纯锗探测器等。低分辨便携式光谱仪常常采用正比计数器或闪烁

X射线荧光光谱仪和X射线荧光能谱仪特点对比

X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。

简述x射线荧光光谱测厚仪特色

  1.可测量0.01um-300um的镀层。  2.可做各种镀层(多层、合金、多层鎳)的精密测量。  3.除平板形外,还可测量圆形、棒形(细线)等各种形状。  4.可制作非破坏性膜厚仪的标准板。  5.该电镀膜厚检测仪可检查非破坏式膜厚仪的测量精度。  6.可高精度测量其他方式不易测量的三层以上的

X荧光光谱仪的保养

X荧光光谱仪工作的外部环境   1、周围强磁场干扰   设备合理的工作环境,要求在没有电机、振动、电磁、高压或有高频率电焊器等电磁干扰的地方安装,否则会干扰设备的谱形或造成设备不能正常工作。   2、环境温度,湿度的影响   应保持室温20~25℃为宜,气温过高或过低都会影响设备的正常运作,所以配有

X荧光光谱仪的使用

 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X荧光光谱仪能将探测系统所收集到的信息转换成

X荧光光谱仪的优点

X荧光光谱仪优点:   a) 分析速度高。测定用时与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。   b) X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可

X荧光光谱分析特点

由于X射线荧光的能量比较大,样品被激发后,产生的特征X射线极易被吸收,而从样品中发射出来的荧光很少,也即是荧光产额很少。因此采用X荧光光谱仪测量微量元素,不是特长,因此不要把精力过分地放在低含量元素分析上。同理,对于轻元素,如硼、碳、氮、氧等,也不要指望有多好的检出限;但对于高含量的轻元素分析,却有

X荧光光谱仪的保养

  X荧光光谱仪工作的外部环境   1、周围强磁场干扰   设备合理的工作环境,要求在没有电机、振动、电磁、高压或有高频率电焊器等电磁干扰的地方安装,否则会干扰设备的谱形或造成设备不能正常工作。   2、环境温度,湿度的影响   应保持室温20~25℃为宜,气温过高或过低都会

X射线荧光光谱仪简介

  X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水

X射线荧光光谱技术的原理

  所有XRF仪器都拥有两个主要成分,一个是X射线源,一般采用X射线管,另一个则是探头。X射线源会发出初级X射线到样品表面,有时会通过滤光器对X射线束进行调整。在光束击打样品原子时,会产生次级X射线,这些次级X射线会被探头收集并处理。  比较稳定的原子是由原子核及绕核旋转的电子构成,电子按照能量层级

X荧光光谱仪技术原理

 X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品,产生X荧光(二次X射线),探测器对X荧光进行检测。   X荧光光谱仪技术原理:   受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长

X荧光光谱仪工作原理

荧光光谱仪又称荧光分光光度计,是一种定性、定量分析的仪器。通过荧光光谱仪的检测,可以获得物质的激发光谱、发射光谱、量子产率、荧光强度、荧光寿命、斯托克斯位移、荧光偏振与去偏振特性,以及荧光的淬灭方面的信息。X荧光光谱仪的工作原理: X荧光光谱仪主要由激发源(X射线管)和探测系统构成。其原理就是:X射

X荧光光谱仪技术原理

X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集

色散X荧光光谱仪原理

当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为 (10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态.这个过程称为驰过程.驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较外层的电

X射线荧光光谱仪(XRF)

原理:用一束X射线或低能光线照射样品材料,致使样品发射二次特征X射线,也叫X射线荧光。这些X射线荧光的能量或波长是特征的,样品中元素的浓度直接决定射线的强度。从而根据特征能量线鉴别元素的种类,根据谱线强度来进行定量分析。XRF有波长散射型(WDXRF)和能量散射型(EDXRF)两种,前者测量精密度好

X射线荧光光谱分析

X射线荧光的激发源使用X射线而不使用电子束,因为使用X射线避免了样品过热的问题。几乎所有的商品X射线荧光光谱仪均采用封闭的X射线管作为初始激发光源。某些较简单的系统可能使用放射性同位素源,而电子激发一般不单独使用在X射线荧光光谱仪中,它仅限于在电子显微镜中X射线荧光分析中使用。X射线荧光谱仪具有快速

X荧光光谱仪测试方法

   1、 X荧光光谱仪样品制备  进行x射线荧光光谱分析的样品,可以是固态,也可以是水溶液。无论什么样品,样品制备的情况对测定误差影响很大。对金属样品要注意成份偏析产生的误筹;化学组成相同,热处理过程不同的样品,得到的计数率也不同;成份不均匀的金属试样要重熔,快速冷却后车成圆片;对表面不平的样品要