AdvancedScience:氧气析出反应催化剂活性研究中取得进展

中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室助理研究员刘吉山与美国西北太平洋国家实验室的合作者在Advanced Science上在线发表了题为Tuning the Electronic Structure of LaNiO3 through Alloying with Strontium to Enhance Oxygen Evolution Activitity 的文章。刘吉山为该论文的第一作者,上海微系统所为第一完成单位。 氧气析出反应(OER)在电解水、可充电金属-空气电池等清洁能源的制备和转化利用中起到重要作用而受到极大的关注。氧气析出反应的动力学十分缓慢,需要在较高的过电位下才能进行,这极大地限制了器件的实际性能。目前,最有效的OER催化剂是IrO2和RuO2。然而,这些贵金属及其氧化物由于其成本高、资源短缺,阻碍了它们的广泛应用。因此开发基于3d过渡金属的高效廉价的OER催化剂是当前研究的热......阅读全文

什么是析氧反应,析氢反应

吸氧腐蚀和析氢腐蚀吸氧腐蚀典型案例就是暴露在空气中的铁会生锈,或者一半在海水,一般在空气中的铁,在海水中的部分会生锈析氢腐蚀最常见的就是锌在盐酸或者稀硫酸中会发生反应生成氢气一个是吸收氧气,就是与氧发生反应一个是析出氢气,就是反应生成氢气环境是酸性溶液或者中性溶液,吸氧腐蚀是弱酸性溶液或中性溶液,析

什么是析氧反应

什么是析氧反应,析氢反应,帮忙各举一个例子吸氧腐蚀:消耗氧气的腐蚀(类似金属被氧气氧化)析氢腐蚀:放出氢气的腐蚀(类似金属置换酸中的氢)

电解水中的析氧反应

非贵金属催化剂的本征活性低。  氢能是一种理想的能源载体,开发大规模、廉价、清洁、高效的制氢技术是氢能有效利用的关键。电解水由于环境友好、产品纯度高以及无碳排放而成为具有应用前景的绿色制氢方法之一。限制电解水制氢大规模应用的最重要瓶颈是如何大幅降低其电能消耗,因而大幅降低制氢成本。其关键是发展廉价、

科学家揭示酸性电化学析氧反应机理,成功操控析氧反应路径

  通过一篇论文,深圳大学蔡兴科研究员和合作者打破了人们对于氧反应机制的固有认知。  研究中,针对新型酸性阳极氧气演化反应的氧反应机制机理,他们给出了充分的证据,能为设计阳极氧气演化反应催化剂提供一定参考。  进一步地,本次成果将能用于氢能制备。详细来说:使用质子交换膜水电解技术所制备的氢气纯度较高

新型阳极析氧催化剂反应活性大幅提升

华东理工大学材料科学与工程学院清洁能源材料与器件团队副教授刘鹏飞,教授戴升、杨化桂,在质子交换膜电解水制氢领域取得重要进展。相关研究发表于《先进材料》。可再生能源驱动的电解水技术被认为是最清洁、最有前景的大规模制氢技术之一,其中质子交换膜电解水(PEMWE)因其制氢速率快,制氢纯度高,制氢输入功率范

研究揭示NiFe基羟基氧化物在电催化析氧反应的作用机理

  近日,我所能源研究技术平台穆斯堡尔谱研究组(DNL2005)王军虎研究员团队与催化与新材料研究中心(十五室)黄延强研究员团队合作,利用自主研发的原位电化学穆斯堡尔谱装置,对Ni-Fe基催化剂在电催化析氧反应 (OER) 中的作用机理进行了深入探索。该合作团队通过实验,在OER起始电位附近观察到存

科研人员发展冷冻抑制新策略

  近日,中科院大连化学物理研究所研究员杨维慎和副研究员朱凯月团队在电催化析氧反应方面取得重要进展。团队发展了一种冷冻抑制新策略,解决了碳修饰过程中钙钛矿结构易破坏问题,首次实现在钙钛矿表面同时脱溶出合金纳米粒子和均匀包覆碳层。该催化剂用于碱性体系催化析氧反应(OER),并表现出显著增强的活性和长期

科研人员发展冷冻抑制新策略

近日,中科院大连化学物理研究所研究员杨维慎和副研究员朱凯月团队在电催化析氧反应方面取得重要进展。团队发展了一种冷冻抑制新策略,解决了碳修饰过程中钙钛矿结构易破坏问题,首次实现在钙钛矿表面同时脱溶出合金纳米粒子和均匀包覆碳层。该催化剂用于碱性体系催化析氧反应(OER),并表现出显著增强的活性和长期稳定

OER和氧气还原反应ORR到底什么区别

OER是阳极反应,H2O被氧化产生O2;ORR是阴极反应,O2被还原产生H2O2(2电子途径)或H2O(4电子途径)。用通俗的话说,电势越高,OER越明显(氧化);电势越低,ORR越明显(还原)。而且ORR需要有O2参与;OER只要有H2O就可以了。

多功能可穿戴电池研究方面取得新进展

近日,华南农业大学材料与能源学院副教授蔡欣和教授方岳平等人在多功能集成电极及其柔性可穿戴锌-空气电池领域取得新进展。他们通过设计构建0D/2D/3D异质结构的双相纳米合金薄膜用于催化析氢/析氧/氧还原反应,利用多尺度界面电子协同效应显著促进了氧化还原动力学,实现了高性能的柔性锌-空气电池及其自驱动电

新型低成本非贵金属电解水催化剂实现18.55%转换效率

  氢能是一种理想的能源载体,开发大规模、廉价、清洁、高效的制氢技术是氢能有效利用的关键。电解水由于环境友好、产品纯度高以及无碳排放而成为具有应用前景的绿色制氢方法之一。限制电解水制氢大规模应用的最重要瓶颈是如何大幅降低其电能消耗,因而大幅降低制氢成本。其关键是发展廉价、易制备的高性能非贵金属电解水

液固界面光催化析氧反应机制研究新突破

近日,华东理工大学化学与分子工程学院计算化学中心/工业催化研究所教授王海丰课题组首次在原子水平上定量地证明了温度调控的水/催化剂(TiO2)界面微环境,揭示了界面微环境在调控光催化反应中起着重要的作用,为通过调控界面微环境设计高催化活性体系提供了新的理论依据。相关研究在线发表于《自然—通讯》。 水/

宁波材料所在磷化镍表面电化学机理和调控方面取得进展

  磷化镍(Ni2P)具有较高的硬度以及优异的耐腐蚀性、耐磨性和高温稳定性,常用于防腐涂层和抗摩擦涂层材料。除了这些优异的结构材料特性,它还具有良好的导电性和优异的催化活性,因而可用来制备稳定服役的电化学电极,在清洁能源和催化领域应用广泛。通过合金化和掺杂等化学手段,可以对Ni2P表面电化学的反应机

科学家开发出高效电解水催化剂

  中科院化学所分子纳米结构与纳米技术重点实验室胡劲松课题组在氢能的清洁获取与应用方面开展了系列研究,并开发出新型高效电解水催化剂。相关成果日前发表于《美国化学会志》等杂志。  据了解,限制电解水制氢大规模应用的最重要瓶颈是如何大幅降低其电能消耗,从而大幅降低制氢成本。其关键是如何有效降低电极上析氧

通过配位调节提高金属卟啉析氧反应活性取得进展

在析氧反应OER中,水或氢氧根离子对金属氧的亲核进攻是形成氧氧键的可能途径之一。通过调整配位结构、提高金属氧的亲核反应活性是改善OER的有效方法,但实现这一目标仍然具有一定的难度。陕西师范大学曹睿教授团队利用配位不饱和的金属卟啉1-M(M = Co, Fe)来提高OER的催化性能,团队设计并合成了1

研究揭示Sr偏析过程中影响电极性能的关键机制

近日,中国科学院大连化学物理研究所催化基础国家重点实验室与佐治亚理工学院刘美林教授合作,在固体氧化物电解池(SOEC)阳极高温析氧反应(OER)活性和稳定性调控方面取得新进展。研究团队系统探究了阳极Sr偏析行为,并结合多种物理化学表征手段,揭示了SrCo0.7Fe0.3O3-δ(SCF)中体相Sr缺

界面修饰钙钛矿同时增强析氧反应活性和稳定性的新策略

  近日,我所无机膜与催化新材料研究组(504组)杨维慎研究员和朱凯月副研究员团队在电催化析氧反应方面取得重要进展,发展了一种冷冻抑制新策略,解决碳修饰过程中钙钛矿结构易破坏问题,首次实现在钙钛矿(Sr2Fe1.3Ni0.2Mo0.5O6-δ,SFNM)表面同时脱溶出合金纳米粒子和均匀包覆碳层。该催

析氢和析氧过程发生的原因和机理

就是说,实际的电极反应在进行的时候,会发生阴极电位比理论值低,阳极电位比理论值高的情况,这就叫做过电位.如果阴极析出的是氢气,就叫析氢过电位,析氧过电位也一样.过电位是由于电极的极化而产生的,就是说实际的电极反应已经偏离了理想的电极反应.  析氢过电位(一定程度上)可以用塔菲尔常数衡量,塔菲尔常数越

理化所提出电化学重整废弃PET塑料耦合海水制氢策略

氢气具有热值高、清洁、可再生等优点。相对于以化石能源为基础的传统制氢方式,利用可再生能源(如太阳能、风能等)驱动的电化学技术,直接分解水制氢,被认为是未来通向“绿氢经济”的最佳途径之一。其中,直接海水电解因无需依赖淡水资源而成为理想的绿色制氢方式之一,但高成本以及海水腐蚀带来的催化剂失活成为制约其发

科研人员制备出Co掺杂MoS2双功能全分解水电催化剂

近期,中国科学院合肥物质科学研究院固体物理研究所环境与能源纳米材料中心在Co掺杂MoS2双功能全分解水电催化剂催化活性调控方面取得进展,相关研究成果发表在国际期刊《先进材料》(Adv. Mater., 2018)和《化学通讯》(Chem. Commun., 54, 3859-3862 (2018))

双功能催化剂高效电解水制氢研究中取得进展

  近期,中国科学院合肥物质科学研究员固体物理研究所纳米材料与器件技术研究部孟国文研究员课题组与韩国浦项科技大学合作,在过渡金属基催化剂的设计合成及其全电解水制氢方面取得新进展,通过优化设计与精准调控,在碳纤维布电极上原位生长制备单分散、超小尺寸过渡金属磷化物纳米晶均匀负载的氮掺杂碳分级纳米片阵列,

“铠甲催化”实现全光谱光热增强电解水析氧反应

近日,中国科学院大连化学物理研究所研究员邓德会和研究员于良团队在“铠甲催化剂”全光谱高效光热催化转化研究上取得新进展。团队以石墨烯封装CoNi金属“铠甲催化剂”为基本单元,构筑了等级纳米笼结构,提升了太阳光吸收率、光热转化效率和催化反应活性,进而实现了全光谱吸收-太阳光热增强电解水析氧反应过程。该工

CeO2修饰Ni3S2纳米片用于高效电催化析氧

  Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis  吴倩*, 高庆平, 孙丽梅, 郭焕美, 台夕市, 李丹, 刘莉,

化学所开发出新型高效电解水催化剂

  氢能是一种理想的能源载体,开发大规模、廉价、清洁、高效的制氢技术是氢能有效利用的关键。电解水由于环境友好、产品纯度高以及无碳排放而成为具有应用前景的绿色制氢方法之一。限制电解水制氢大规模应用的最重要瓶颈是如何大幅降低其电能消耗,因而大幅降低制氢成本。其关键是如何有效降低电极上析氧反应(OER)和

解释析氢和析氧过程发生的原因和机理

就是说,实际的电极反应在进行的时候,会发生阴极电位比理论值低,阳极电位比理论值高的情况,这就叫做过电位.如果阴极析出的是氢气,就叫析氢过电位,析氧过电位也一样.过电位是由于电极的极化而产生的,就是说实际的电极反应已经偏离了理想的电极反应.  析氢过电位(一定程度上)可以用塔菲尔常数衡量,塔菲尔常数越

硼磷酸锰实现高效电催化水氧化与有机底物的选择性氧化

  Adv. Mater.:硼磷酸锰实现高效电催化水氧化与有机底物的选择性氧化  地球上生命的关键催化反应之一,水氧化成分子氧,发生在由含锰簇介导的光系统II(PSII)的析氧复合体中。在这一研究领域的大量工作包括开发用于析氧反应(OER)的高效人工锰基催化剂。使用人工OER催化剂对有机底物进行选择

硒酸蚀刻辅助空位工程用于设计析氧反应高活性电催化剂

  复旦胡林峰&东南大学孙正明&南京工大邵宗平Adv. Mater.  发展环境友好型和可持续的转化技术对可再生能源的储存和利用具有重要意义。例如,通过电化学水分解制氢被认为是可再生能源便捷储存和高质量利用的最有前途的方法之一,但它的实际应用很大程度上取决于成本和效率。水分解涉及两个半反应,即阳极的

可持续能量转换的高效低成本催化剂成功研发

原文地址:http://news.sciencenet.cn/htmlnews/2023/4/497814.shtm电催化氧还原和析氧反应(ORR/OER)是水分解,燃料电池,金属空气电池,二氧化碳还原等一系列清洁能源技术的关键反应之一。同时加快氧还原(ORR)和氧析出(OER)反应,是实现高稳定的

Ni3Se4@NiFe水滑石纳米片的制备及其全解水研究获进展

  近期,中国科学院合肥物质科学研究院固体物理研究所研究员李越课题组在分级异质结构Ni3Se4@NiFe 水滑石纳米片(LDH)的制备及其全解水研究方面取得新进展,相关研究结果发表在Nanoscale Horizons (DOI:10.1039/x0xx00000x)上。  随着能源危机和环境问题的

多孔Fe3O4修饰的Ni(OH)2纳米片的制备及其析氧性能研究

  Direct growth of holey Fe3O4-coupled Ni(OH)2  sheets on nickel foam for the oxygen evolution reaction  多孔Fe3O4修饰的Ni(OH)2纳米片的制备及其析氧性能研究  丁钰, 苗博强, 赵越,