膝沟藻毒素Gonyautoxins的分离纯化

摘要: 目的 从微小亚历山大藻( Alexandrium mimutum Halim) Amtk 2 中分离纯化膝沟藻毒素gonyautoxins。方法用凝胶色谱、离子交换色谱等方法从人工培养的微小亚历山大藻Amtk 2 酸酒精萃取物中分离纯化膝沟藻毒素。结果 从100 L Amtk 2 培养液中获得(6174 ±0131) ×109 个藻细胞,其酸酒精萃取物经凝胶色谱分离首次在国内得到膝沟藻毒素GTX24 ,GTX21 ,GTX23 和GTX22 混合物(29159 ±0128) mg。从此混合物中取出4106 mg 经两次离子交换色谱纯化得到纯GTX24 (0140 ±01002) mg , GTX21 (5195 ±0103) ×10 - 2 mg ,GTX23 (6192 ±0105) ×10 - 4 mg 和GTX22 (0111 ±01005) mg。结论 人工培养的微小亚历山大藻Amtk 2 酸酒精萃取物通过凝胶色......阅读全文

离子交换色谱概述

  离子交换色谱是蛋白纯化技术中常用的一种纯化方法,其原理是指被分离物质所带的电荷可与离子交换剂所带的相反电荷结合,这种带电分子与固定相之间的结合作用是可逆的,在改变pH 或者用逐渐增加离子强度的缓冲液洗脱时,离子交换剂上结合的物质可与洗脱液中的离子发生交换而被洗脱到溶液中。由于不同物质的电荷不同,

离子交换色谱(一)

实验方法原理 离子交换色谱是将离子交换基因(CM、SP、Q、DEAE等)键合于一定的惰性载体(纤维素、交联葡聚糖,交联琼脂糖等)之上,并以此作为固定相,依据样品所带电荷的不同,从而与固定相上的离子交换基团相互作用的程度不同而进行分离的一种色谱方法。离子交换色谱技术已广泛用于蛋白质、多肽、寡核苷酸、病

离子交换色谱(二)

其他 一、离子交换剂的选择 1.  剂型的选择 在决定选择离子交换剂的类别之前,先要了解所研究的生物大分子保持生物活性和可溶解性的pH范围,然后根据其等电点以及其在上述pH范围内的电泳行为观察大分子的带电情况,再据此选择合适的离子交换剂。具体方法是;在流动相pH条件下进行电泳,向阳极泳动的蛋白质,可

液相色谱法术语概念沟流

沟流( channeling)色谱柱填充层出现开裂的槽沟,携带组分的流动相顺着槽沟移动,而不能与固定相充分有效接触的现象。

固相微萃取/高效液相色谱法测定水中的微囊藻毒素

摘 要: 采用CWX/DVB萃取头, 应用固相微萃取与高效液相色谱联用技术( SPME /HPLC)分析了水溶液中的痕量微囊藻毒素。对SPME的萃取条件进行了优化, 并对实际水样进行了分析。该方法测定MC - LR (LR型微囊藻毒素)的线性范围为1.00~200μg/L, 相关系数为0.999 5

吸附色谱、分配色谱、离子交换色谱与排阻色谱(二)

  薄层色谱法    按各单体所规定的载体,放入适当容器,加入适量水以配成悬浮液,在厚度均匀一致的50×200mm或200×200mm平滑玻璃板上将此悬浮液均布成0.25mm的厚度,风干后一般在110度下干燥0.5-1h(或按单体规定)。    以离薄层板一端约25mm的位置作为点样基线,用

吸附色谱、分配色谱、离子交换色谱与排阻色谱(一)

 色谱法,又称层析法。根据其分离原理,有吸附色谱、分配色谱、离子交换色谱与排阻色谱等方法。  吸附色谱是利用吸附剂对被分离物质的吸附能力不同,用溶剂或气体洗脱,以使组分分离。常用的吸附剂有氧化铝、硅胶、聚酰胺等有吸附活性的物质。  分配色谱是利用溶液中被分离物质在两相中分配系数不同,以使组分分离。其

大孔树脂/离子交换树脂/凝胶/硅胶/纤维类等色谱柱

GX中压玻璃层析柱简介:层析柱主要是根据要分离的植物有效成份(生物碱,多糖类,黄酮类,皂苷类等)、化工中间体(维生素,蛋白质,氨基酸,抗生素,核酸等)、活性物质等物质与层析柱内的不同填料(大孔树脂、离子交换树脂,凝胶,硅胶,纤维类等填料):一、在不同的亲和度,二、在不同浓度的酸碱液下,三、在不同的极

藻毒素对人体的危害

水体富营养化会导致藻类大量繁殖,并产生一种能对水生生物和人体健康有毒害作用的藻毒素,能产生毒素的藻类多为蓝藻,其中以铜绿微囊藻、节球藻、水华鱼腥藻和水华束丝藻毒性最大。微囊藻毒素是分布最厂、最复杂的一种毒素,研究结果发现它是迄今为止已发现的最强的肝肿瘤促进剂。1996年福建东山岛有136人因食用被藻

凝胶渗透色谱优点

凝胶渗透色谱优点(1)全部组分均在溶剂分子洗脱之前洗脱下来,分离时间短。(2)可以预测洗脱时间,可以连续进样。(3)凝胶色谱的分离过程不依靠分子间作用力,一般情况下,没有强保留的分子累积在色谱柱,所以分离时试样组分不会丢失,柱的使用寿命也会延长。(4)保留时间短,色谱峰窄,容易检测。

凝胶色谱的原理

凝胶色谱可以分离分子量不同的物质大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和

凝胶色谱的原理

凝胶色谱,又称为分子排阻色谱,其分离物质的原理为分子筛原理,且多用于分离有机大分子化合物,如蛋白质、多肽、多糖等.分子筛效应:一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动,垂直向下的移动和无定向的扩散运动.大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只

凝胶过滤色谱柱

凝胶过滤色谱柱如多糖类化合物。凝胶的代表是葡萄糖系列,洗脱溶剂主要是水。凝胶渗透色谱法主要用于有机溶剂中可溶的高聚物 (聚苯乙烯、聚氯已烯、聚乙烯、聚甲基丙烯酸甲酯等) 相对分子质量分布分析及分离,常用的凝胶为交联聚苯乙烯凝胶,洗脱溶剂为四氢呋喃等有机溶剂。凝胶色谱不但可以用于分离测定高聚物的相对分

SRT凝胶色谱柱

SRT凝胶色谱柱:SRT SEC键合固定相采用专利的表面修饰技术,通过在高纯度具有良好机械稳定性的硅胶基质上,键合一层均匀的纳米厚度中性亲水薄膜而制备得到。工艺采用可控的化学修饰技术,因此能确保色谱柱与色谱柱之间有着可靠的重现性。SRT填料采用化学键合技术,表面亲水涂层覆盖完全,因此不仅具有优异的稳

凝胶色谱仪

凝胶色谱属于液相色谱,它是按被分析混合物不同组分分子大小的不同进行分离的,多用于高聚物的分析。它以液体做流动相,以多孔固体做固定相,其中孔是有一定尺寸限制的,而且大小不一。它的分离过程是在装有多孔固定相的色谱柱中进行的。当尺寸大小不同的分子通过色谱柱时,可占据的体积也不同。对流动相分子而言,填料孔的

凝胶渗透色谱(2)

实验部分直接法:在测定淋出液浓度的同时测定其粘度或光散射,从而求出其分子量。间接法:用一组分子量不等的、单分散的试样为标准样品,分别测定它们的淋出体积和分子量,则可确定二者之间的关系。仪器GPC仪的组成:泵系统、(自动)进样系统、凝胶色谱柱、检测系统和数据采集与处理系统。2.1.1.泵系统:包括一个

凝胶色谱仪

凝胶色谱仪采用国际先进技术及关键部件的基础上结合自主创新,产品性能国内领先,该设备主要用于水性和油性高分子聚合物的分子量大小及分子量分布检测,以及糖类、醇、脂肪酸、脂类的定性定量分析。

凝胶色谱的原理

凝胶色谱,又称为分子排阻色谱,其分离物质的原理为分子筛原理,且多用于分离有机大分子化合物,如蛋白质、多肽、多糖等.分子筛效应:一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动,垂直向下的移动和无定向的扩散运动.大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只

凝胶渗透色谱(1)

凝胶渗透色谱(Gel Permeation Chromatography、GPC)是1964年,由J.C.Moore首先研究成功。不仅可用于小分子物质的分离和鉴定,而且可以用来分析化学性质相同分子体积不同的高分子同系物。(聚合物在分离柱上按分子流体力学体积大小被分离开)基本原理分离原理凝胶具有化学惰

凝胶色谱仪

凝胶色谱属于液相色谱,它是按被分析混合物不同组分分子大小的不同进行分离的,多用于高聚物的分析。它以液体做流动相,以多孔固体做固定相,其中孔是有一定尺寸限制的,而且大小不一。它的分离过程是在装有多孔固定相的色谱柱中进行的。当尺寸大小不同的分子通过色谱柱时,可占据的体积也不同。对流动相分子而言,填料孔的

凝胶色谱技术概述

凝胶色谱法凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。一、基本理论

凝胶色谱重要参数

⑴柱体积:柱体积是指凝胶装柱后,从柱的底板到凝胶沉积表面的体积。在色谱柱中充满凝胶的部分称为凝胶床,因此柱体积又称“床”体积,常用Vt 表示。⑵外水体积:色谱柱内凝胶颗粒间隙,这部分体积称外水体积,亦称间隙体积,常用Vo表示。⑶内水体积:因为凝胶为三维网状结构,颗粒内部仍有空间,液体可进入颗粒内部,

什么是凝胶色谱

  凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分析技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。凝胶色谱法又称分子排阻色谱法。凝胶色谱主要用于高聚物的相对分子质量分级分析以及相对分子质量分布测试。目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医

凝胶渗透色谱现状

 进入20世纪80年代以后,由于高效液相色谱技术的发展,微粒(粒径小于lOμm)凝胶的制成、计算机技术在凝胶渗透色谱仪上的匹配和使用,使凝胶渗透色谱的实验操作技术、数据处理、结果的记录打印更趋于仪器化和自动化,从而大大缩短了分析时间。凝胶渗透色谱法进入了高教凝胶渗透色谱发展阶段。凝胶渗透色谱的应用除

凝胶色谱的原理

凝胶色谱,又称为分子排阻色谱,其分离物质的原理为分子筛原理,且多用于分离有机大分子化合物,如蛋白质、多肽、多糖等.分子筛效应:一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动,垂直向下的移动和无定向的扩散运动.大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只

凝胶色谱的原理

凝胶色谱的原理比较特殊,类似于分子筛。待分离组分在进入凝胶色谱后,会依据分子量的不同,进入或者不进入固定相凝胶的孔隙中,不能进入凝胶孔隙的分子会很快随流动相洗脱,而能够进入凝胶孔隙的分子则需要更长时间的冲洗才能够流出固定相,从而实现了根据分子量差异对各组分的分离。调整固定相使用的凝胶的交联度可以调整

凝胶色谱柱操作

1、 溶胀商品凝胶是干燥的颗粒,通常以40~63um的使用zui多。凝胶使用前需要在洗脱液中充分溶涨一至数天,如在沸水浴中将湿凝胶逐渐升温到近沸,则溶涨时间可以缩短到1~2小时。凝胶的溶涨一定要完全,否则会导致色谱柱的不均匀。热溶涨法还可以杀死凝胶中产生的细菌、脱掉凝胶中的气泡。2、 装柱由于凝胶的

凝胶色谱的分类

  根据分离的对象是水溶性的化合物还是有机溶剂可溶物,凝胶色谱又可分为凝胶过滤色谱(GFC)和凝胶渗透色谱(GPC)。  凝胶过滤色谱  凝胶过滤色谱一般用于分离水溶性的大分子,  如多糖类化合物。凝胶的代表是葡萄糖系列,洗脱溶剂主要是水。  凝胶渗透色谱法  凝胶渗透色谱法主要用于有机溶剂中可溶的

离子交换色谱法

以离子交换树脂或化学键合离子交换剂为固定相,利用被分离组分离子交换能力的差别或选择性系数的差别而实现分离的色谱方法称为离子交换色谱法。按照可交换离子所带电荷符号的不同又可分为阳离子交换色谱法和阴离子交换色谱法。

离子交换色谱的原理

  离子交换是利用一种不溶性高分子化合物,它的分子中具有解离性基团(交换基),在水溶液中能与溶液中的其他阳离子或阴离子起交换作用。此种交换反应都是可逆的,一般也都是遵循化学平衡的规律。虽然交换反应都是平衡反应,但在色谱柱上进行时,由于连续添加新的交换溶液,平衡不断按正反应方向进行,直至完全,因此可以