扫描电子显微镜在材料科学研究中都有哪些应用

它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分辨率也在纳米级水平。AFM测量对样品无特殊要求,不需要对样品进行特殊处理,仅在大气环境下就可测量固体表面、吸附体系等,得到三维表面粗造度等信息。 优点缺点 优点 原子力显微镜观察到的图像 相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物......阅读全文

扫描电子显微镜在材料科学研究中都有哪些应用

它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,

扫描电子显微镜在材料分析中的应用

扫描电镜(SEM)广泛地应用于金属材料(钢铁、冶金、有色、机械加工)和非金属材料(化学、化工、石油、地质矿物学、橡胶、纺织、水泥、玻璃纤维)等检验和研究。在材料科学研究、金属材料、陶瓷材料、半导体材料、化学材料等领域进行材料的微观形貌、组织、成分分析,各种材料的形貌组织观察,材料断口分析和失效分析,

差式扫描量热仪在日常中都有哪些应用?

 差式扫描量热仪主要用于研究材料的熔融与结晶过程,通过分析可获得材料的结晶度、玻璃化转变、相转变、氧化稳定性(氧化诱导期)、反应温度及反应热焓等信息,从而可进一步分析物质的比热、纯度,研究高分子共混物的相容性、热固性树脂的固化过程及反应动力学等,广泛应用于塑料、橡胶、纤维、涂料、黏合剂、医药、食品、

扫描电镜在材料研究中的应用

扫描电子显微镜(SEM)自诞生之日起,它结合不同附件其可以应用在不同领域范围中。扫描电镜常见的应用场景包括了断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析等等,结合钢铁材料的研究粗略列举如下:(1) 机械零部件失效分析,可根据

扫描电镜在材料学中的应用

1试样制备技术和透射电镜相比,扫描电镜试样制备比较简单。在保持材料原始形状情况下,可以直接观察和研究试样表面形貌及其它物理效应(特征),这是扫描电镜的一个突出优点。扫描电镜的有关制样技术是以透射电镜、光学显微镜及电子探针X射线显微分析制样技术为基础发展起来的,有些方面还兼具透射电镜制样技术,所用设备

扫描电镜在材料分析中的应用

  1. 引言  自从1965年第一台商品扫描电镜问世以来,经过40多年的不断改进,扫描电镜的分辨率从第一台的25nm提高到现在的0.01nm,而且大多数扫描电镜都能通X射线波谱仪、X射线能谱仪等组合,成为一种对表面微观世界能过经行全面分析的多功能电子显微仪器。扫描电镜已成为各种科学领域和工业部门广

扫描电子显微镜在新型陶瓷材料显微分析中的应用

1 显微结构的分析在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其zui后的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的

扫描电子显微镜在新型陶瓷材料显微分析中的应用

1 显微结构的分析在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其zui后的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的

微阵列在材料科学研究中的应用

微阵列在材料科学研究中的国内主要发展:(1)阵列构筑技术基于氧化铝模板,通过气相法、电沉积、原位溶胶-凝胶等技术,构筑了各种纳米线、纳米管、异质结纳米线等的有序排列的阵列体系。发展了催化诱导CVD技术,在孔内预先置入金属纳米颗粒作为催化剂,通过CVD过程沿孔内生长出单晶Si,GaN,等纳米线阵列体系

扫描电子显微镜在金属材料领域的应用

  (1)金属材料断裂失效分析。常见以磨损、腐蚀、断裂、变形等失效形式存在。通过对断口微观形貌的观察,根据脆性断裂及韧性断裂机理,结合材料受力状态分析,找出失效根源。  (2)金属材料的表面缺陷分析。常见缺陷以起泡、翘皮、裂纹等形式存在。利用扫描电子显微镜对金属表面或界面的薄层进行组分、结构和能态等

扫描电镜在材料研究中的应用四

 利用背散射EBSD装置,对汽车板等小晶粒的织构产品,可在轧制并退火之后,统计各种取向晶粒的比例,研究轧制和退后工艺对织构的影响。又如焊接试样的熔合区为凝固状态的柱状晶,因其是定向生长,存在织构,可用EBSD得到各种取向晶粒的分布情况,并可进行统计,这对焊接材料、焊接工艺以及焊接性能的研究又扩展到了

扫描电镜在材料研究中的应用三

 利用拉伸样品台,可预先制造人工裂纹,研究在有预裂纹情况下材料对裂纹大小的敏感性以及裂纹的扩展速度,有益于材料断裂韧性的研究。例如,钢帘线因其在后续加工过程中要拉拔到0.2mm左右的直径,对夹杂物非常敏感,因此,其炼钢过程对夹杂物的控制要求特别严格。采用本仪器,可预先制作一个有夹杂物的钢帘线试样,在

扫描电镜在材料研究中的应用二

利用高温样品台,可以观察材料在加热过程中组织转变的过程,研究不同材料在热状态下转变的差异。在材料工艺性能研究方面,可以直接观察组织形态的动态变化,弥补了以前只能通过间接观察方法的不足。例如,耐火材料和铁氧体的烧结温度都在1000℃以上,实验中可以观察材料的原位变化,待冷却下来后,结合能谱仪和EBSD

超薄切片技术在材料科学研究中的应用

超薄切片技术是一种常见的透射电镜制样技术,在材料科学领域有着非常广泛的应用,尤其适合有机高分子材料和无机粉体材料,可以非常简单方便的获得纳米级切片,供透射电镜观察;对金属材料和其他无机材料也有一定的应用。另外,因为这一技术也可以非常方便的获得样品的截面信息,因此在扫描电镜和原子力显微镜制样方面也有一

拉曼光谱应用(三)在材料科学研究中的应用

拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。包括:(1)薄膜结构材料拉曼研究:拉曼光谱已成CVD(化学气相沉积法)制备薄膜的检测和鉴定手段。拉曼可以研究单、多、微和非晶硅结构以及硼化非晶硅、氢化非晶硅、金刚石、类金刚石等层状薄膜的结构。(2)超晶格材料研究

扫描电子显微镜在非金属材料领域的应用

  (1)材料的表面形貌观察  通过扫描电子显微镜观察材料表面形貌,为研究样品形态结构提供了便利,有助于监控产品质量,改善工艺。  观察的主要内容是分析材料的几何形貌、材料的颗粒度及颗粒度的分布、物相的结构等。  (2)涂镀层表面形貌分析与镀层厚度测量  ♦涂镀层表面形貌分析  常见涂镀层失效现象有

拉曼光谱技术在材料科学研究中的应用

  拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。包括:   1、薄膜结构材料拉曼研究:拉曼光谱已成CVD化学气相沉积法、制备薄膜的检测和鉴定手段。拉曼可以研究单、多、微和非晶硅结构以及硼化非晶硅、氢化非晶硅、金刚石、类金刚石等层状薄膜的结构。   2、

扫描电镜技术及其在碳材料表征中的应用

摘要:电子显微技术是材料表征的重要技术手段之一,其中扫描电子显微镜(简称SEM)由于具有应用范围广、样品制备简单、图像景深大等优点,因而在碳材料表征中发挥着越来越重要的作用。本文在介绍扫描电镜的结构、工作原理及样品制备的基础上,简要概述了扫描电镜在材料表征中的应用,并以碳纳米管为例对图谱进行了分析。

低真空扫描电镜技术在材料研究中的应用

1 引言低真空扫描技术是指样品处在低真空条件下,完成显微观测的技术。低真空扫描电镜的成像原理基本上与普通扫描电镜一样,它们的区别在于样品室的真空状态,常规扫描电镜样品室真空度必须优于10-3 Pa,不导电样品需要表面喷镀导电层,样品上多余的电子由导电层引走;而低真空扫描电镜样品室需要通入气体适当降低

原子力显微镜在材料科学研究中的应用

       AFM 是利用样品表面与探针之间力的相互作用这一物理现象,因此不受STM 等要求样品表面能够导电的限制,可对导体进行探测,对于不具有导电性的组织、生物材料和有机材料等绝缘体,AFM 同样可得到高分辨率的表面形貌图像,从而使它更具有适应性,更具有广阔的应用空间。AFM 可以在真空、超高真

原子力显微镜在材料科学研究中的应用

原子力显微镜在材料科学研究中的应用AFM 是利用样品表面与探针之间力的相互作用这一物理现象,因此不受STM 等要求样品表面能够导电的限制,可对导体进行探测,对于不具有导电性的组织、生物材料和有机材料等绝缘体,AFM 同样可得到高分辨率的表面形貌图像,从而使它更具有适应性,更具有广阔的应用空间。AFM

扫描电子显微镜观察纳米材料的应用简介

  扫描电子显微镜是一种多功能的仪器,具有很多优越的性能,是用途最为广泛的一种仪器,它可以进行如下基本分析:  (1)三维形貌的观察和分析;  (2)在观察形貌的同时,进行微区的成分分析。  观察纳米材料。所谓纳米材料就是指组成材料的颗粒或微晶尺寸在0. 1~100 nm范围内,在保持表面洁净的条件

扫描探针显微镜及其在纳米结构材料表征中的应用

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}      扫描探针显微镜(scanningprobemicroscopy,SPM)是纳米材料表征中最常用、最有力的工具

微阵列在材料科学研究中的发展

(1)阵列构筑技术基于氧化铝模板,通过气相法、电沉积、原位溶胶-凝胶等技术,构筑了各种纳米线、纳米管、异质结纳米线等的有序排列的阵列体系。发展了催化诱导CVD技术,在孔内预先置入金属纳米颗粒作为催化剂,通过CVD过程沿孔内生长出单晶Si,GaN,等纳米线阵列体系;发展了基于模板的电沉积技术,成功地获

飞纳扫描电子显微镜都有哪些优势是你不知道的

 1、Phenom  Pure 适用于传统大电镜待测样品的快速筛选,也适合于光学显微镜的分辨率无法满足需求的客户。2、环境适应性高,完全防震Phenom(飞纳)可以放置在几乎所有的室内环境当中,无需超净间。采用灯丝、探测器、样品台相对一体化的设计,震动不会引起三者间的相对运动,使Phenom成像不受

飞纳扫描电子显微镜都有哪些优势是你不知道的

 1、Phenom  Pure 适用于传统大电镜待测样品的快速筛选,也适合于光学显微镜的分辨率无法满足需求的客户。2、环境适应性高,完全防震Phenom(飞纳)可以放置在几乎所有的室内环境当中,无需超净间。采用灯丝、探测器、样品台相对一体化的设计,震动不会引起三者间的相对运动,使Phenom成像不受

现代扫描电镜的发展及其在材料科学中的应用

1 扫描电镜原理 扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。扫描电镜是

现代扫描电镜的发展及其在材料科学中的应用

 介绍了扫描电子显微镜的工作原理和特点,特别是近几年发展起来的环境扫描电镜(ES2EM)及其附带分析部件如能谱仪、EBSD装置等的原理、特点和功能,并结合钢铁材料研究展望了其应用前景。  1、扫描电镜原理  扫描电镜(ScanningElectronMicroscope,简写为SEM)是一个复杂的系

扫描电镜在耐火材料中的应用

       扫描电镜即扫描电子显微镜,是目前应用比较广泛光学仪器,是1965年发明的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。二次电子能够产生样品表面放大的形貌像,这个像是

金属材料腐蚀都有哪些危害

   金属腐蚀问题遍及国民经济的很多领域,比如油气、石化、交通、机械制造等,可以说只要是使用金属材料的地方都存在着腐蚀问题。腐蚀给社会生产带来了许多损失和危害。今天,世伟洛克与大家一起分享交流有关金属腐蚀的知识。我们先从金属腐蚀的危害开始。   经济损失   腐蚀造成的经济损失十分惊人。据国内