X射线光电子能谱xps图谱分析都包括些啥?

X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用下式表示:hn=Ek+Eb+Er (1) 其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(1)又可表示为:hn=Ek+Eb+Φ (2)Eb=hn-Ek-Φ (3) 仪器材料的功函数Φ是一个定值,约为 4 eV,入射X光子能量已知,这样,如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以了解样品中元......阅读全文

X射线光电子能谱xps图谱分析都包括些啥?

  X光电子能谱分析的基本原理  X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用下式表示:hn=Ek+Eb+Er (1)  其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量

XPS图谱解释

(1)谱线识别X射线入射在样品上,样品原子中各轨道电子被激发出来成为光电子。光电子的能量统计分布(X射线光电子能谱)代表了原子的能级分布情况。不同元素原子的能级分布不同,X射线光电子能谱就不同,能谱的特征峰不同,从而可以鉴别不同的元素。电子能量用E = Enlj 表示。光电子则用被激发前原来所处的能

X射线光电子能谱(-XPS)

XPS:X射线光电子能谱分析(XPS, X-ray photoelectron spectroscopy)测试的是物体表面10纳米左右的物质的价态和元素含量,而EDS不能测价态,且测试的深度为几十纳米到几微米,基本上只能定性分析,不好做定量分析表面的元素含量。 原理:用X射线去辐射样品,使原子或分子

X射线光电子能谱(XPS)的简介

XPS是重要的表面分析技术之一,是由瑞典Kai M. Siegbahn教授领导的研究小组创立的,并于1954年研制出世界上第一台光电子能谱仪,1981 年,研制出高分辨率电子能谱仪。他在1981年获得了诺贝尔物理学奖。

XPS图谱荷电校正

当用XPS测量绝缘体或者半导体时,由于光电子的连续发射而得不到电子补充,使得样品表面出现电子亏损,这种现象称为“荷电效应”。荷电效应将使样品表面出现一稳定的电势Vs,对电子的逃离有一定束缚作用。因此荷电效应将引起能量的位移,使得测量的结合能偏离真实值,造成测试结果的偏差。在用XPS测量绝缘体或者半导

XPS图谱之鬼峰

有时,由于X射源的阳极可能不纯或被污染,则产生的X射线不纯。因非阳极材料X射线所激发出的光电子谱线被称为“鬼峰”。

XPS图谱之卫星峰

常规X射线源(Al/Mg Kα1,2)并非是单色的,而是还存在一些能量略高的小伴线(Kα3,4,5和Kβ等),所以导致XPS中,除Kα1,2所激发的主谱外,还有一些小的伴峰。

X射线光电子能谱仪(XPS)的发展

  X射线光电子能谱(XPS)也被称作化学分析电子能谱(ESCA)。该方法首先是在六十年代由瑞典科学家K.Siebabn 教授发展起来的。这种能谱最初是被用来进行化学元素的定性分析,现在已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。此外,配合离子束剥离技术和变角XPS技术,还可以进行

【技术分享】X射线光电子能谱分析(XPS)

 XPS的原理是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。被光子激发出来的电子称为光电子。可以测量光电子的能量,以光电子的动能/束缚能bindingenergy,(Eb=hv光能量-Ek动能-W功函数)为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图。从而获得待测物组成

XPS图谱之全谱分析

全谱分析一般用来说明样品中是否存在某种元素。比较极端的,对于某一化学成分完全未知的样品,可以通过XPS全谱分析来确定样品中含有哪些元素(H和He除外)。而更多情况下,人们采用已知成分的原料来合成样品,然后通过XPS全谱来确定样品中到底含有哪些元素;或者对某一已知成分的样品进行某种处理(掺杂或者脱除)

XPS图谱之自旋轨道分裂

由于电子的轨道运动和自旋运动发生耦合后使轨道能级发生分裂。对于l>0的内壳层来说,用内量子数j(j=|l±ms|)表示自旋轨道分裂。即若l=0 则j=1/2;若l=1则j=1/2或3/2。除s亚壳层不发生分裂外,其余亚壳层都将分裂成两个峰。

X射线光电子能谱技术(XPS)的基本组件

X射线源超高真空不锈钢舱室及超高真空泵电子收集透镜电子能量分析仪μ合金磁场屏蔽电子探测系统适度真空的样品舱室样品支架样品台样品台操控装置

X射线光电子能谱技术(XPS)的系统结构原理

X射线源是用Al或Mg作阳极的X射线管。 它们的光子能量分别是1486 eV和1254 eV 。 安装过滤器(或称单色器)是为了减小光子能量分散。X射线光电子能谱仪(系统)结构原理离子枪的作用一方面是为了溅射清除样品表面污染,以便得到清洁表面,从而提高其分析的准确性。另一 方面,可以对样品进行溅射剥

X射线光电子能谱技术(XPS)的的仪器结构

XPS仪器设计与最早期的实验仪器相比,有了非常明显的进展,但是所有的现代XPS仪器都基于相同的构造:进样室、超高真空系统、X射线激发源、离子源、电子能量分析器、检测器系统、荷电中和系统及计算机数据采集和处理系统等组成。这些部件都包含在一个超高真空(Ultra High Vacuum,简称为UHV)封

XPS图谱怎样确定元素价态

XPS图谱怎样确定元素价态分峰后,得到的峰的结合能与标准结合能能对照,确定其价态。

X射线能谱技术(XPS)在造纸工业中的应用

简单介绍了X射线能谱技术(XPS)的作用机理及其在纸张表面涂层结构、纤维素和木素含量、造纸助剂及纸病分析等方面的应用。 

X射线光电子能谱技术(XPS)的历史、原理及应用

一、XPS的历史X 射线光电子能谱(XPS)也被称作化学分析电子能谱(ESCA)。该方法首先是在六十年代由瑞典科学家K.Siebabn 教授发展起来的。这种能谱最初是被用来进行化学元素的定性分析,现在已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。此外,配合离子束剥离技术和变角XPS 

X射线荧光(XRF):理解特征X射线

  什么是XRF?   X射线荧光定义:由高能X射线或伽马射线轰击激发材料所发出次级(或荧光)X射线。这种现象广泛应用于元素分析。  XRF如何工作?   当高能光子(X射线或伽马射线)被原子吸收,内层电子被激发出来,变成“光电子”,形成空穴,原子处于激发态。外层电子向内层跃迁,发射出能量等于两级能

XPS图谱之光电子谱线

每一种元素都有自己特征的光电子线,它是元素定性分析的主要依据。谱图中强度最大、峰宽最小、对称性最好的谱峰,称为XPS的主谱线。

XPS图谱之俄歇电子谱线

电子电离后,芯能级出现空位,弛豫过程中若使另一电子激发成为自由电子,该电子即为俄歇电子。俄歇电子谱线总是伴随着XPS,但具有比XPS更宽更复杂的结构,多以谱线群的方式出现。特征:其动能与入射光hν无关。

XPS图谱如何进行荷电校正

最常用的,人们一般采用外来污染碳的C1s作为基准峰来进行校准。以测量值和参考值(284.8 eV)之差作为荷电校正值(Δ)来矫正谱中其他元素的结合能。具体操作:1) 求取荷电校正值:C单质的标准峰位(一般采用284.8 eV)-实际测得的C单质峰位=荷电校正值Δ;2)采用荷电校正值对其他谱图进行校正

X射线光电子能谱技术(XPS)的系统基本原理

XPS方法的理论基础是爱因斯坦光电定律。用一束具有一定能量的X射线照射固体样品,入射光子与样品相互作用,光子被吸收而将其能量转移给原子的某一壳层上被束缚的电子,此时电子把所得能量的一部分用来克服结合能和功函数,余下的能量作为它的动能而发射出来,成为光电子,这个过程就是光电效应。该过程可用下式表示:h

X射线光电子能谱技术(XPS)的结构和使用方法

一、超高真空系统超高真空系统是进行现代表面分析及研究的主要部分。XPS谱仪的激发源,样品分析室及探测器等都安装在超高真空系统中。通常超高真空系统的真空室由不锈钢材料制成,真空度优于1×10-9 托。在X射线光电子能谱仪中必须采用超高真空系统,原因是(1)使样品室和分析器保持一定的真空度,减少电子在运

软X射线源上X射线能谱与X射线能量的测量

本文介绍了国内首次利用针孔透射光栅谱仪对金属等离子体Z箍缩X射线源能谱的测量结果及数据处理方法。同时用量热计对该源的单脉冲X射线能量进行了测量并讨论了其结果。

X射线管中X射线的产生原理

实验室中X射线由X射线管产生,X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料).用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出.

XPS用于定性分析、定量分析

XPS, 全称为X-ray Photoelectron Spectroscopy(X射线光电子能谱), 早期也被称为ESCA(Electron Spectroscopy for Chemical Analysis),是一种使用电子谱仪测量X-射线光子辐照时样品表面所发射出的光电子和俄歇电子能量分布的

X射线光谱

1914年,英国物理学家莫塞莱(Henry Moseley,1887-1915)用布拉格X射线光谱仪研究不同元素的X射线,取得了重大成果。莫塞莱发现,以不同元素作为产生X射线的靶时,所产生的特征X射线的波长不同。他把各种元素按所产生的特征X射线的波长排列后,发现其次序与元素周期表中的次序一致,他称这

X射线治疗

  X射线应用于治疗[7],主要依据其生物效应,应用不同能量的X射线对人体病灶部分的细胞组织进行照射时,即可使被照射的细胞组织受到破坏或抑制,从而达到对某些疾病,特别是肿瘤的治疗目的。

X射线散射

美国物理学家康普顿(Arthur Holy Compton,1892~1962)在大学生时期就跟随其兄卡尔·康普顿开始X射线的研究。后来他到了卡文迪什实验室,主要从事g射线的实验研究。他用精湛的实验技术精确测定了γ射线的波长,并确定γ射线在散射后波长会变得更长。但他没能从理论上解释这个实验事实。他到