耐辐照钒酸盐离子交换材料高选择性富集镧系元素
随着化石能源的日益枯竭,核能因其高效、清洁等特点备受关注。然而,核燃料循环过程中不可避免地产生放射性废物,其处理和处置成为核能发展的重要掣肘因素。其中,镧系元素是核乏燃料中的重要裂变产物,具有比锕系元素更高的中子反应截面,比锕系元素更容易捕获中子。为更好地实现嬗变,将裂变产物中的镧系元素进行有效分离对核燃料循环具有重要意义。同时,镧系元素作为一种战略性资源,在光学、磁学、催化等领域有着重要的应用。实际上,在其开采与应用过程中会造成镧系元素在环境中的泄露,既造成资源的浪费又危害人们的健康。然而,实际环境体系复杂,废液常常呈强酸或强碱性,并含有大量干扰离子。从复杂环境体系中高效、高选择性富集和分离镧系元素仍然是这一领域的重点和难点。 中国科学院福建物质结构研究所结构化学国家重点实验室黄小荥课题组的冯美玲研究员领导的研究团队围绕放射性核素去污方面存在的重点和难点问题,基于利用晶态离子交换材料实现对放射性污染物的固相-离子识别分离......阅读全文
耐辐照钒酸盐离子交换材料高选择性富集镧系元素
随着化石能源的日益枯竭,核能因其高效、清洁等特点备受关注。然而,核燃料循环过程中不可避免地产生放射性废物,其处理和处置成为核能发展的重要掣肘因素。其中,镧系元素是核乏燃料中的重要裂变产物,具有比锕系元素更高的中子反应截面,比锕系元素更容易捕获中子。为更好地实现嬗变,将裂变产物中的镧系元素进行有效
镧系元素的离子的磁性
镧系元素的磁性较复杂,镧系元素由于4f电子能被5s和5p电子很好的屏蔽掉,受外电场的作用较小,轨道运动对磁矩的贡献并没有对周围配位原子的电场作用所抑制,所以在计算其磁矩时必须同时考虑电子自旋和轨道运动两方面对磁矩的影响 。镧系元素及化合物中未成对电子数多,加上电子轨道运动对磁矩所作的贡献,使得它
镧系元素离子的磁性介绍
镧系元素的磁性较复杂,镧系元素由于4f电子能被5s和5p电子很好的屏蔽掉,受外电场的作用较小,轨道运动对磁矩的贡献并没有对周围配位原子的电场作用所抑制,所以在计算其磁矩时必须同时考虑电子自旋和轨道运动两方面对磁矩的影响 。 镧系元素及化合物中未成对电子数多,加上电子轨道运动对磁矩所作的贡献,使
什么是镧系元素?
镧系元素,是指元素周期表中第57号元素镧到71号元素镥15种元素的统称。它们的化学性质相似,单独组成一个系列,在元素周期表中占有特殊位置。镧系元素(Ln)、钪(Sc)、钇(Y),共17种元素总称为稀土元素(RE)。La(镧),Ce(铈),Pr(镨),Nd(钕),Pm(钷),Sm(钐),Eu(铕)称为
镧系元素的光谱特点
特点1.大多数Ln3+离子在可见光区内有吸收 [6] 。2.具有相同未成对f电子的稀土离子具有相近的颜色。3.Ln3+离子是由f-f跃迁产生的。f-f跃迁属于禁阻跃迁,其吸收光谱的摩尔消光系数很小(约为0.51·mol-1·cm-3)。4.其吸收光谱为类原子的线状光谱5.也可以发生Ln3+配体间的
镧系元素的分组情况
根据稀土元素性质的递变情况将稀土元素分组有以下几种情况 :从原子的电子层构型以及它们的原子量的大小把稀土元素分成两组:即铕以前的镧系元素叫做轻稀土元素或称铈组元素;把铕以后的镧系元素加上钇叫做重稀土元素或称钇组元素。.按照稀土元素硫酸盐溶液与Na2SO4等生成的稀土元素硫酸复盐在水溶液中的溶解度可把
镧系元素的分组情况
根据稀土元素性质的递变情况将稀土元素分组有以下几种情况 :从原子的电子层构型以及它们的原子量的大小把稀土元素分成两组:即铕以前的镧系元素叫做轻稀土元素或称铈组元素;把铕以后的镧系元素加上钇叫做重稀土元素或称钇组元素。.按照稀土元素硫酸盐溶液与Na2SO4等生成的稀土元素硫酸复盐在水溶液中的溶解度可把
镧系元素的主要成员
镧(La)系元素(lanthanide element)包括镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥,它们都是稀土元素的成员。
镧系元素物理性质
镧系金属为银白色,较软,有延展性 。活泼性仅次于碱金属和碱土金属,应隔绝空气保存。金属活泼性顺序由Sc、Y、La递增;由La到Lu递减,既La最活泼。镧系金属密度随原子序数增加,从La到Lu逐渐增加。但Eu和Yb的密度较小。镧系金属是强还原剂,其还原能力仅次于Mg,其反应性可与铝比。而且随着原子序
镧系元素的相关参数介绍
丰度稀土元素并不稀少,但在地壳中分布分散,彼此性质相似,难以提取、分离。原子序数为偶数的元素一般比相邻原子序数为奇数的的元素的含量高 [4] 。矿藏按其存在形态,主要有三种类型的矿源:1.稀土共生构成独立的稀土元素矿物。2.以类质同晶的形式分散在方解石、磷灰石等矿物中。3.吸附状态存在于粘土矿、云
镧系元素的应用领域
应用领域镧系元素应用极为广泛。化学工业上主要用作催化剂。例如混合镧系元素的氯化物和磷酸盐用作催化剂,以加速石油的裂化分解。混合稀土氧化物广泛用作玻璃抛光材料和玻璃的脱色剂,还可用来制造耐辐射玻璃和激光玻璃。用三氧化二钇和三氧化二镝可制得耐高温透明陶瓷,这种陶瓷被用于火箭、激光、电真空等技术工程上。此
镧系元素的化学性质
镧系金属是强还原剂,其还原能力仅次于Mg,其反应性可与铝比。而且随着原子序数的增加,还原能力呈逐渐减弱的趋势 。在酸性溶液中Ln2+离子为强还原剂,Ln4+离子为强氧化剂。由于镧系和锕系两个系列的元素随着原子序数的增加都只在内层轨道(相应的4f和5f轨道)充填电子,其外层轨道(相应的6s、5d和7s
镧系元素的具体性质
镧系元素都是活泼金属,具有非常强的还原能力,活性仅次于碱金属和碱土金属,比铝、锌等元素强。镧系元素中La的活泼性最强。镧系元素单质容易和卤素、氧气、酸、硫、氮气、氢气等发生化学反应。因此,为了避免镧系金属单质被氧化,通常保存时表面需要涂蜡。镧系元素的草酸盐,碳酸盐、磷酸盐都难溶于水,而镧系金属单质与
科学家成功分离镧系元素
镧系元素大家族的15个成员各具特异的光、电、磁和催化等物理和化学性能,镧系元素在溶液和固体中均呈现稳定的相似化学性质,主要区别在于内层的4f电子数目的不同,并且镧系收缩导致相邻元素之间平均离子半径相差只有0.01 Å。因此,镧系元素的分离是一项极为重要并具有挑战性的工作。 苏州大学放射医学及交
关于镧系元素的应用领域介绍
应用领域 镧系元素应用极为广泛。化学工业上主要用作催化剂。例如混合镧系元素的氯化物和磷酸盐用作催化剂,以加速石油的裂化分解。混合稀土氧化物广泛用作玻璃抛光材料和玻璃的脱色剂,还可用来制造耐辐射玻璃和激光玻璃。用三氧化二钇和三氧化二镝可制得耐高温透明陶瓷,这种陶瓷被用于火箭、激光、电真空等技术工
关于镧系元素的基本信息介绍
镧系元素,是指元素周期表中第57号元素镧到71号元素镥15种元素的统称。它们的化学性质相似,单独组成一个系列,在元素周期表中占有特殊位置。镧系元素(La)、钪(Sc)、钇(Y),共17种元素总称为稀土元素(RE)。La(镧),Ce(铈),Pr(镨),Nd(钕),Pm(钷),Sm(钐),Eu(铕)
关于镧系元素的矿藏和分布介绍
一、丰度 稀土元素并不稀少,但在地壳中分布分散,彼此性质相似,难以提取、分离。原子序数为偶数的元素一般比相邻原子序数为奇数的的元素的含量高 [4] 。 二、矿藏 按其存在形态,主要有三种类型的矿源: 1.稀土共生构成独立的稀土元素矿物。 2.以类质同晶的形式分散在方解石、磷灰石等矿物中
简述镧系元素的物理性质
镧系金属为银白色,较软,有延展性。活泼性仅次于碱金属和碱土金属,应隔绝空气保存。金属活泼性顺序由Sc、Y、La递增;由La到Lu递减,既La最活泼。镧系金属密度随原子序数增加,从La到Lu逐渐增加。但Eu和Yb的密度较小。镧系金属是强还原剂,其还原能力仅次于Mg,其反应性可与铝比。而且随着原子序
镧系元素的电子吸收光谱的介绍
1.大多数La3+离子在可见光区内有吸收。 2.具有相同未成对f电子的稀土离子具有相近的颜色。 3.La3+离子是由f-f跃迁产生的。f-f跃迁属于禁阻跃迁,其吸收光谱的摩尔消光系数很小(约为0.51·mol-1·cm-3)。 4.其吸收光谱为类原子的线状光谱 5.也可以发生La3+配体
关于镧系元素的化学性质介绍
镧系金属是强还原剂,其还原能力仅次于Mg,其反应性可与铝比。而且随着原子序数的增加,还原能力呈逐渐减弱的趋势 。 在酸性溶液中La2+离子为强还原剂,La4+离子为强氧化剂。 由于镧系和锕系两个系列的元素随着原子序数的增加都只在内层轨道(相应的4f和5f轨道)充填电子,其外层轨道(相应的6s
解离增强镧系元素荧光免疫分析技术的原理
解离增强镧系元素荧光免疫分析(DELFIA)是时间分辨荧光免疫分析中的一种。它用具有双功能基团结构的螯合剂,使其一端与铕(Eu)连接,另一端与抗体/抗原分子上的自由氨基连接,形成EU标记的抗体/抗原,经过免疫反应之后生成免疫复合物。由于这种复合物在水中的荧光强度非常弱,因此加入一种增强剂,使Eu从复
元素周期表中最远元素被诱导成化合物
在被发现近80年后,元素周期表中最稀有、最神秘的元素之一,终于“公开”了一些关键的化学秘密。化学家合成了一种以钷元素(粉红色)为中心的“配位复合物”据《自然》报道,美国橡树岭国家实验室的研究人员首次使用放射性钷制造出一种化学“复合物”,这种化合物与周围的一些分子结合在一起。这一合成壮举使该研究团队能
元素周期表中最远元素被诱导成化合物
在被发现近80年后,元素周期表中最稀有、最神秘的元素之一,终于“公开”了一些关键的化学秘密。化学家合成了一种以钷元素(粉红色)为中心的“配位复合物”。图片来源:D. M. Driscoll et al./Nature据《自然》报道,美国橡树岭国家实验室的研究人员首次使用放射性钷制造出一种化学“复合物
自动化荧光免疫分析系统—时间分辨荧光免疫分析仪
时间分辨荧光免疫分析仪 (一)原理 属于非均相荧光免疫测定,镧系元素属于三价稀土离子,包括铕(Eu3+),钐(Sm3+),铽(Tb3+),钕(Nd3+)和镝(Dys+)等,它们的荧光寿命较长,尤其是Eu3+和Tb3+的荧光寿命特别长且荧光强。因此,时间分辨荧光免疫测定中多用Eu3+和Tb3+
微量元素的非生物体
岩石中微量元素基于地球化学行为可分为: 稀土元素(REE):原子序数57-71的镧系元素以及与镧系相关密切的钪和钇共17种元素在地球化学上又称之为稀土元素,包括:La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Y。 铂族元素(PGE,原子序数从
自动化荧光免疫分析系统都包含哪些分析仪呢?
一、时间分辨荧光免疫分析仪 (一)原理 属于非均相荧光免疫测定,镧系元素属于三价稀土离子,包括铕(Eu3+),钐(Sm3+),铽(Tb3+),钕(Nd3+)和镝(Dys+)等,它们的荧光寿命较长,尤其是Eu3+和Tb3+的荧光寿命特别长且荧光强。因此,时间分辨荧光免疫测定中多用Eu3+和Tb
适用于TRFRET的荧光染料:trFluor-链霉亲和素
时间分辨荧光:理论上,荧光是最灵敏的检测手段,由于许多分子间和分子内的变化会改变标记物的荧光发射。因此,很早就把它作为均相分析技术可能的新的手段。而现在偏振,淬灭,时间关联,荧光寿命改变以及荧光共振能量转移(FRET)已经被广泛应用在对分子间作用的研究中。在生物溶液或血清中的很多化合物和蛋白质是自发
时间分辨荧光免疫分析仪发展历史
1979年,芬兰Wallac公司研发部的Soini和Hemmila首次提出了建立稀土离子标记物的“时间分辨荧光免疫分析”理论。 1983年,Soini和Kojola首先开发出以镧系元素为示踪物的时间分辨荧光测量仪,建立了新的非放射性微量分析检测技术。同一年,Pettersson等人运用此仪器首
吕弋、刘睿:基于DNA分子机器的多组份肺癌标志物分析
虎年开春之际!四川大学吕弋、刘睿团队:基于DNA分子机器的多组分肺癌标志物分析取得进展。 学者简介刘 睿 四川大学化学学院教授、博士生导师。吕 弋 四川大学分析测试中心主任、教授、博士生导师。 分子机器与细胞中大多数运动相关,比如在肌动蛋白丝上移动的肌球蛋白,以及微管上的动力蛋白和驱动蛋白等
锂电池材料氟化物的基本信息介绍
在卤化物中,氟化物容易与某些高氧化态的阳离子形成稳定的配离子,如六氟合铝酸根离子(AlF63ˉ)。与其他卤化物不同,金属锂、碱土金属和镧系元素的氟化物难溶于水,而氟化银可溶于水,其他金属的氟化物易溶于水。氟化氢的水溶液称氢氟酸,是一种弱酸。金属氟化物还易形成酸式盐,如氟氢酸钾(KHF2)。 萤