机械力实现人造细胞分裂

地球上生命的成功是基于活细胞分裂成两个子细胞的惊人能力。在这样的分裂过程中,细胞外膜必须经历一系列的形态转变,最终膜分裂。近日,德国马普学会胶体与界面研究所和聚合物研究所的研究人员,通过在人工细胞膜上固定低密度的蛋白质,现在已经实现了对这些形状转变和由此产生的分裂过程前所未有的控制。 为了控制分裂过程,今天的细胞依赖于由ATP驱动水解的高度特化蛋白质复合物。然而,正如研究人员认为控制分裂可以通过一种更简单的方式实现。这些细胞由巨大的脂质囊泡作成,囊泡的大小与典型的动物细胞相同,并由单一的脂质膜包围,脂质膜为内外水溶液之间提供了坚固而稳定的屏障。 此外,囊泡和细胞膜具有本质上相同的分子结构。具有宽膜颈的人工细胞在数天或数周内保持稳定,一旦颈部闭合,隔膜就会对颈部产生一种收缩力,将人工细胞分裂成两个子细胞。 除了证明人工细胞能够分裂,研究人员还发现了一种新的机制,以系统地控制这种收缩力。他们设计了一种膜,通过暴露在不同浓度......阅读全文

机械力实现人造细胞分裂

  地球上生命的成功是基于活细胞分裂成两个子细胞的惊人能力。在这样的分裂过程中,细胞外膜必须经历一系列的形态转变,最终膜分裂。近日,德国马普学会胶体与界面研究所和聚合物研究所的研究人员,通过在人工细胞膜上固定低密度的蛋白质,现在已经实现了对这些形状转变和由此产生的分裂过程前所未有的控制。  为了控制

机械力实现人造细胞分裂

  地球上生命的成功是基于活细胞分裂成两个子细胞的惊人能力。在这样的分裂过程中,细胞外膜必须经历一系列的形态转变,最终膜分裂。近日,德国马普学会胶体与界面研究所和聚合物研究所的研究人员,通过在人工细胞膜上固定低密度的蛋白质,现在已经实现了对这些形状转变和由此产生的分裂过程前所未有的控制。  为了控制

研究揭示简单机械力实现人造细胞分裂

人造细胞分裂 图片来源:Jan Steinkühler  地球上生命的成功是基于活细胞分裂成两个子细胞的惊人能力。在这样的分裂过程中,细胞外膜必须经历一系列的形态转变,最终膜分裂。近日,德国马普学会胶体与界面研究所和聚合物研究所的研究人员,通过在人工细胞膜上固定低密度的蛋白质,现在已经实现了对这些形

机械力转导的作用

中文名称机械力转导英文名称mechanotransduction定  义细胞在接受包括摩擦力、压力、牵引力、重力和剪切力等机械力刺激时,将这些刺激信号的机械能转化为电信号或生物化学信号并最终引起细胞生理反应的过程。应用学科生物化学与分子生物学(一级学科),信号转导(二级学科)

机械力转导的定义

中文名称机械力转导英文名称mechanotransduction定  义细胞在接受包括摩擦力、压力、牵引力、重力和剪切力等机械力刺激时,将这些刺激信号的机械能转化为电信号或生物化学信号并最终引起细胞生理反应的过程。应用学科生物化学与分子生物学(一级学科),信号转导(二级学科)

机械力敏感通道的结构功能

中文名称机械力敏感通道英文名称mechanosensitive channel定  义介导细胞对机械力刺激(如对细胞膜受到的压力)做出反应的离子通道。能够将机械力转化为电及化学信号。此类离子通道可以分为多个家族,广泛见于各种生物。应用学科生物化学与分子生物学(一级学科),信号转导(二级学科)

机械力如何影响干细胞分化?

  采用一种独特的工具箱,研究人员就能用珠子按摩细胞,以了解机械力如何影响干细胞分化。  间充质干细胞——是不断更新我们的骨骼、软骨和肌肉的成体干细胞,因为它们可大量生产各种各样不同的愈合因子,因此被认为具有治疗疾病的巨大潜力。大量的临床试验正在研究这些细胞,用于许多疾病(从糖尿病到脊髓损伤)的治疗

纳米机械力引发细胞自噬

  机械力刺激在细胞生长、分化与通讯等重要生命活动中发挥关键作用。近年来,机械门控离子通道蛋白Piezo的发现为在分子水平理解机械力对于生物体的作用奠定了基础。然而,如何在单细胞水平定量分析机械力对于细胞效应的作用仍然是一个难题。近日,上海交通大学樊春海院士、邵志峰教授与中国科学院上海高等研究院胡钧

机械力如何影响干细胞分化?

   采用一种独特的工具箱,研究人员就能用珠子按摩细胞,以了解机械力如何影响干细胞分化。  间充质干细胞――是不断更新我们的骨骼、软骨和肌肉的成体干细胞,因为它们可大量生产各种各样不同的愈合因子,因此被认为具有治疗疾病的巨大潜力。大量的临床试验正在研究这些细胞,用于许多疾病(从糖尿病到脊髓损伤)的治

机械力敏感通道的基本概念

中文名称机械力敏感通道英文名称mechanosensitive channel定  义介导细胞对机械力刺激(如对细胞膜受到的压力)做出反应的离子通道。能够将机械力转化为电及化学信号。此类离子通道可以分为多个家族,广泛见于各种生物。应用学科生物化学与分子生物学(一级学科),信号转导(二级学科)

“界面机械力”可精准调控免疫系统

常用的疫苗佐剂主要通过分子结合与生化刺激激活免疫系统,这使老年人或免疫低响应人群的免疫激活受限。如何让佐剂对免疫细胞可以进行化学及物理双重刺激?中国科学院院士马光辉、中国科学院过程工程研究所研究员夏宇飞团队发现只需重新设计铝佐剂,利用Pickering乳液平台使其构筑出“可变形”的三维机械界面,就可

智能型力刺激响应荧光材料实现不同机械力识别

  近日,《染料和颜料》在线刊发了太原理工大学新材料界面科学与工程教育部重点实验室郭鹍鹏团队联合中山大学教授杨志涌和山西能源学院副教授张芳,在智能型力刺激响应荧光材料研究领域的新进展。  力刺激响应荧光材料因在力刺激作用下会发生荧光信号的改变,使其在力传感、信息记录和加密防伪等领域具有潜在的利用价值

1250A大鼠离体肌肉机械力特性测试系统

离体完整无缺肌肉机械特性测试系统,离体无损肌肉机械力测试系统型号:1200A - in vitro System - Mouse1200A系列大小鼠离体肌肉测试系统特点:1. 应用于大鼠(1205A系统)和小鼠(1200A系统)2. 这是一个完整的测试系统, 可以测量单条完整无缺肌肉的机械特性, 力

Nature:机械力竟然会影响肺部的免疫反应!

当身体抵御感染时,温度、pH值平衡和新陈代谢都会发生变化。耶鲁大学的研究人员想知道是否还有其他因素在起作用,在最近的一项研究中,研究人员证实了机械力也会影响免疫反应,相关研究成果发表在Nature上,题为"Mechanosensation of cyclical force by PIEZO1

新型MRL材料:机械力响应红光和近红外荧光开启

  机械响应荧光(MRL)材料因其在机械力作用下可发生荧光信号(发光颜色或发光强度)的明显改变,使其成为力传感、防伪、缺陷检测及光信息存储等领域备受瞩目的研究材料体系。要获得具有高对比度和远程检测能力的MRL材料,不仅需要材料在机械力作用下发生荧光由暗到亮的开启型(turn-on)变化,同时还需要所

中国机械500强揭晓-仪器仪表业需更给力

  2014年中国机械500强8月6日揭晓。其中入围的仪器仪表企业有:华立集团股份有限公司、上海自动化仪表股份有限公司、图尔克(天津)传感器有限公司、中国四联仪器仪表集团有限公司等。  在中国机械工业企业管理协会主办,机械工业经济管理研究院、世界经理人集团8月6日联合承办的2014中国机械500强暨

机械力调控B淋巴细胞免疫活化新进展

  2017年7月31日,清华大学生命学院刘万里研究组在《eLife》期刊在线发表了名为《蛋白激酶Cβ(PKCβ)和黏着斑激酶协同调控B淋巴细胞的免疫活化对呈递抗原的基质硬度的敏感性》(Substrate stiffness governs the initiation of B cell acti

外界的机械力信号如何重塑线粒体的结构与功能

  细胞内存在一套精密的机械力感知和响应系统,当细胞膜上的黏附受体 (例integrin) 在感知细胞之间的机械力信号之后,会通过激活FAK信号通路以及驱动细胞骨架的重构来将压力信号传导给细胞内的细胞器。比如说,当感知外界机械压力时,细胞核会通过异染色质驱动的细胞核软化来保护核DNA免受损伤 (详见

细胞分裂素与植物的细胞分裂

细胞分裂素与植物的细胞分裂密切有关,研究发现在拟南芥的主根中,细胞分裂素并不直接影响根分生组织区中的细胞分裂,而是主要通过控制拟南芥主根分生组织区的细胞分化速度,来影响分生组织区的大小。外源添加细胞分裂素,可以在不影响细胞分裂的情况下使主根的分生组织区变小;而部分参与细胞分裂素合成或信号转导途径的基

杂交水稻借力转基因技术-有望实现机械化制种

  23日,记者从湖南杂交水稻研究中心获悉,该中心与湖南桃花源农业科技股份有限公司、四川农业大学三方合作,将第三代杂交水稻育种技术与雌性不育恢复系制种模式相结合,找到杂交水稻机械化制种的新技术路径。这意味着,未来我国有望进入杂交水稻大规模机械化制种新时代。  我国现有杂交稻主要使用“箱式制种”技术,

自然发文报道细胞“感知”机械力精巧分子机器结构与机制

  《自然》期刊以长文形式在线 发表 了清华大学肖百龙、李雪明课题组题为《Piezo1 离子通道的结构与机械门控机制》(Structure and Mechanogating Mechanism of the Piezo1 Channel)的研究论文,他们解析了哺乳动物机械门控 Piezo1 离子通

1500A系列细小肌肉组织机械力特性测试系统

特点:1.设计应用于肌纤维, 肌肉束,单条肌肉或细小的肌肉如trabeculae2.适用于长度-张力, 力-收缩速率和硬度等的测量?3.力度峰值达至100mN4.可控温度范围: 0-40°C5.400μL 或1900μL循环灌流浴, 包括两条铂电极用以提供刺激6.可以配合标准显微镜或者倒置显微镜7.

什么是细胞分裂?

细胞分裂(cell division)是指活细胞增殖及其数量由一个细胞分裂为两个细胞的过程。分裂前的细胞称母细胞(mother cell),分裂后形成的新细胞称子细胞(daughter cell)。通常包括细胞核分裂和细胞质分裂两步。在核分裂过程中母细胞把遗传物质传给子细胞。真核细胞分裂包括有丝分裂

细胞分裂的概念

细胞分裂(cell division)是指活细胞增殖及其数量由一个细胞分裂为两个细胞的过程。分裂前的细胞称母细胞(mother cell),分裂后形成的新细胞称子细胞(daughter cell)。通常包括细胞核分裂和细胞质分裂两步。在核分裂过程中母细胞把遗传物质传给子细胞。真核细胞分裂包括有丝分裂

细胞分裂的定义

细胞分裂(英语:cell division)是生物体生长和繁殖的基础,通常由一个母细胞产生两个或若干子细胞,是细胞周期的一部分。产生两个不同子细胞的分裂被称为不对称细胞分裂,也称为异裂。根据类型常可区分为有丝分裂(mitosis)和无丝分裂,在真核生物中以有丝分裂尤为重要,它不改变染色体的倍数。细胞

细胞分裂的奥秘

  当一个细胞中存在过多或过少的染色体,就会导致不良后果,如出现癌症和肿瘤。一般来说,细胞是在有丝分裂M期通过其母细胞获得的染色体,如果这个过程出现错误,染色体分配不均,就会出现异常染色体数目,这被称为非整倍体,会导致疾病的产生。奇怪的是,尽管这一进程的重要性尽人皆知,但是我们对于这一过程还并不是那

细胞分裂的介绍

  细胞分裂(cell division)是指活细胞增殖及其数量由一个细胞分裂为两个细胞的过程。分裂前的细胞称母细胞,分裂后形成的新细胞称子细胞。通常包括细胞核分裂和细胞质分裂两步。在核分裂过程中母细胞把遗传物质传给子细胞。[1]真核细胞分裂包括有丝分裂、减数分裂、无丝分裂。

研究发现机械力诱导的醛类代谢重塑促进肿瘤转移新机制

近日,中国科学院分子细胞科学卓越创新中心等,揭示了在受限环境中,机械挤压力通过诱导醛脱氢酶ALDH1B1介导的醛类代谢重塑,从而维持肿瘤细胞存活并促进其远端转移的分子机制。肿瘤转移是癌症患者死亡的主要原因,其关键机制在于肿瘤细胞在体内复杂微环境中实现长距离迁移。特别是,当肿瘤细胞穿越狭窄受限空间时,

研究发现机械力诱导的醛类代谢重塑促进肿瘤转移新机制

近日,中国科学院分子细胞科学卓越创新中心等,揭示了在受限环境中,机械挤压力通过诱导醛脱氢酶ALDH1B1介导的醛类代谢重塑,从而维持肿瘤细胞存活并促进其远端转移的分子机制。肿瘤转移是癌症患者死亡的主要原因,其关键机制在于肿瘤细胞在体内复杂微环境中实现长距离迁移。特别是,当肿瘤细胞穿越狭窄受限空间时,

新型DNA结构的荧光张力探针于活细胞机械力可视化研究

  电学、化学和力学是细胞内最常见的三大信号系统,它们相互协调,共同维持着细胞的生命活动。前两者已被人们广泛研究,而细胞的机械力信号传递过程因缺少有效的研究方法,人们一直对其认识有限。研究表明,细胞在体内拥挤的环境中不仅通过挤来挤去以获得足够的生存空间,同时,细胞的生命过程也不断的受到挤压、拉伸、弯