多重PCR基因芯片检测新研究
来自疾病预防控制中心传染病预防控制所传染病诊断室的研究人员建立并初步评价了一种针对重要肠道病原菌的多重PCR基因芯片方法,这一方法具有较高的特异性,并且混合PCR可以分别按照种属内和种属间的引物组合方案用于多病原的筛检。 感染性腹泻在我国发病率居各类传染病之首,长期以来严重危害人民健康。其中绝大部分由细菌引起,具有发病急、传播快等特点,对其进行快速诊断以确定传染源是传染病防制工作面临的首要问题。目前在我国基层疾控单位大多沿用以培养生化鉴定为主的传统检测方法,繁琐耗时,已不能满足复杂多变的疫情处理工作。免疫学方法和细菌快速鉴定仪的使用在一定程度上缓解了这一情况,但由于缺乏特异性高质量好的诊断血清,而且受诊断菌种数量和通量的限制,仍不能进行快速准确的诊断。 为了解决这一问题,在这项研究中,研究人员采用多重PCR方法对重要的肠道病原菌包括致病性大肠、霍乱弧菌、副溶血弧菌、沙门氏菌、空肠弯曲菌、小肠结肠炎耶尔森菌、志贺氏菌、李斯......阅读全文
基因芯片技术及其研究现状和应用前景
摘要:基因芯片技术是90年代中期以来快速发展起来的分子生物学高新技术,是各学科交叉综合的崭新科学。其原理是采用光导原位合成或显微印刷等方法,将大量DNA探针片段有序地固化予支持物的表面,然后与已标记的生物样品中DNA分子杂交,再对杂交信号进行检测分析,就可得出该样品的遗传信息。基因芯片技术目前国
基因芯片技术及其研究现状和应用前景
生物芯片技术是随着"人类基因组计划"(human genome project, HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。生物芯片技术包括
基因芯片技术及其研究现状和应用前景
生物芯片技术是随着"人类基因组计划"(human genome project, HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。生物芯片技术
ACMG:基因芯片分析技术研究进展
1- 采用基因芯片分析技术揭示慢性淋巴细胞白血病(Chronic Lymphocytic Leukemia)与10q24.32复发性等位基因缺失有关 Genomic microarray analysis of chronic lymphocytic leukemia reveals
基因芯片技术在疟疾研究中的应用
随着人类基因组( human genome p roject, HGP) 、多种模式生物(model organism)和部分病原体基因组测序的完成,基因序列数据以前所未有的速度不断增长。传统实验方法已无法系统地获得和诠释日益庞大的基因序列信息,研究者们迫切需要一种新的手段,以便大规模、高通
基因芯片技术及其研究现状和应用前景
摘要:基因芯片技术是90年代中期以来快速发展起来的分子生物学高新技术,是各学科交叉综合的崭新科学。其原理是采用光导原位合成或显微印刷等方法,将大量DNA探针片段有序地固化予支持物的表面,然后与已标记的生物样品中DNA分子杂交,再对杂交信号进行检测分析,就可得出该样品的遗传信息。基因芯片技术目前国
生物技术在食品检测中的应用研究
摘 要:当代社会人类对食品安全的关注度越来越高,相应的食品检测技术也得到不断改善。其中生物技术挥了重要的作用,PCR技术、酶联免疫吸附技术(ELISA)、PCR-免疫技术(PCR-ELISA)、免疫亲合色谱(IAC)、生物芯片(Biochips) 等技术以各自的优点,被广泛地运用于食品检测领域。
基因芯片,百姓受益的检测技术
复杂的医学诊断可以再快些、精准些、费用再低些吗?基因芯片的出现及广泛应用或将解决这个问题。 去年11月,昆明寰基生物芯片开发有限公司基因芯片医学检测中心在云南国家级经济技术开发区海归创业园落成。这是我省首个专业基因芯片医学检测中心,也是国内唯一以基因芯片技术为核心的第三方医学检验机构,设计
基因芯片,百姓受益的检测技术
复杂的医学诊断可以再快些、精准些、费用再低些吗?基因芯片的出现及广泛应用或将解决这个问题。 去年11月,昆明寰基生物芯片开发有限公司基因芯片医学检测中心在云南国家级经济技术开发区海归创业园落成。这是我省首个专业基因芯片医学检测中心,也是国内唯一以基因芯片技术为核心的第三方医学检验机构,设计检测
实验室检验检测工具基因芯片
基因芯片(genechip)(又称DNA芯片、生物芯片)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的靶核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的
多重荧光定量pcr最多检测多少种
这个看你自己的设置。qPCR仪一般是96孔板,最多有5个通道。理论上,你用一个通道作为内标,2个孔分别做阴阳性对照。那么可以做94*4=376个。当然这只是理论上的最大值,实际操作的时候受很多限制,如多重PCR之间的交叉反应导致无法合孔,样本量不足等。具体到肿瘤相关的突变检测试剂盒,目前拿到CFDA
罗氏新冠和流感多重检测试剂盒获FDA紧急使用授权
美国食品药品监督管理局于11月17日表示,已授予罗氏公司用于新冠病毒和甲/乙型流感的新版多重分子检测的紧急使用授权。 罗氏Cobas新冠病毒和甲/乙型流感V2是一种实时RT-PCR检测法,用于定性检测和区分疑似新冠呼吸道感染患者鼻腔或鼻咽拭子样本中的新冠病毒、甲型流感和乙型流感RNA。可在罗氏的C
略谈生物技术在食品检测中的应用
摘要:当代社会人类对食品安全的关注度越来越高,相应的食品检测技术也得到改善。其中生物技术也挥了重要的作用,PCR技术、酶联免疫吸附技术(ELISA)、PCR-免疫技术(PCR-ELISA)、免疫亲合色谱(IAC)、生物芯片(Biochips)等技术以各自的优点,被广泛地运用于食品检测领域。
双重PCR毛细管电泳法检测大豆转基因
实验方法原理 针对转基因大豆基因组中被导入的35S启动子、NOS终止子和CP4-EPSPS抗草甘膦基因等外源基因,自行设计了两对引物,采用双重PCR同时扩增上述基因,用8g/L羟丙基甲基纤维素为筛分介质,在50cm×100μm i.d.涂
双重PCR毛细管电泳法检测大豆转基因
双重PCR-毛细管电泳法检测大豆转基因可应用于快速检测抗草甘膦转基因大豆。实验方法原理针对转基因大豆基因组中被导入的35S启动子、NOS终止子和CP4-EPSPS抗草甘膦基因等外源基因,自行设计了两对引物,采用双重PCR同时扩增上述基因,用8g/L羟丙基甲基纤维素为筛分介质,在50cm×100μm
PCR基因芯片上荧光PCR反应的研究(三)
2.2 PCR-SSCP并测序分析发现X连锁遗传性铁幼粒细胞贫血家系ALAS2基因第5外显子基因异常 分析两兄弟及其父母、外祖父母的ALAS2基因,两兄弟ALAS2基因第5外显子的PCR扩增产物有与正常脐血不同的单链电泳条带,他们的父亲和外祖父有与正常脐血相同的单链电泳条带,而他们的母亲和外祖母同时
基因芯片技术及其研究现状和应用前景(二)
2.3 分子杂交 样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反(5)。芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程
PCR基因芯片上荧光PCR反应的研究(一)
郝麟1) 朱平1)* 于晓梅2) 张大成2) 赵新生3) 欧阳贱华3 (1)北京大学第一医院 北京 100034; 2)北京大学微电子学研究所 北京100871; 3)北京大学化学与分子工程学院 北京100871) 目的: 我们设计一种含有大量微反应池的PCR基因芯片,能对基因的重
PCR基因芯片上荧光PCR反应的研究(四)
2.5 用SYBR Green荧光染料做常规实时定量PCR分析HLA 应用位点特异性PCR(SCP)方法从20例正常人中确定2位HLAA2(编号1、2)与2位HLA非A2(编号3、4)。 在GeneAmp ®SDS 5700检测SYBR荧光染料4步位点特异PCR反应(图4)SYBR荧光染料PCR反
基因芯片技术在疟原虫研究中的应用
基因芯片技术的出现有力地促进了人们对疟原虫生物学的认识。早在2000年,恶性疟原虫的基因组测序尚未完成, Hayward等根据恶性疟原虫绿豆核酸酶基因文库, 制成“鸟枪”DNA ( shotgunDNA)芯片,分析了疟原虫滋养体和配子体之间的基因表达差异,为疟原虫发育阻断剂和疫苗研究提供了有益线
基因芯片技术及其研究现状和应用前景(一)
摘要:基因芯片技术是90年代中期以来快速发展起来的分子生物学高新技术,是各学科交叉综合的崭新科学。其原理是采用光导原位合成或显微印刷等方法,将大量DNA探针片段有序地固化予支持物的表面,然后与已标记的生物样品中DNA分子杂交,再对杂交信号进行检测分析,就可得出该样品的遗传信息。基因芯片技术
PCR基因芯片上荧光PCR反应的研究(五)
3.讨论 随着近年基因芯片技术的发展,研究者逐渐认识到基于核酸杂交原理的传统基因芯片缺陷与应用的局限性。随着PCR技术的进展,特别是荧光定量PCR技术的出现PCR技术已成为生物医学领域中应用最广泛的技术。如果一种基因芯片能直接进行PCR反应,而且能够同时扩增大批可能发生变异的基因显然会有广泛
基因芯片研究方向及当前面临的困难
尽管基因芯片技术已经取得了长足的发展,得到世人的瞩目,但仍然存在着许多难以解决的问题,例如技术成本昂贵、复杂、检测灵敏度较低、重复性差、分析泛围较狭窄等问题。这些问题主要表现在样品的制备、探针合成与固定、分子的标记、数据的读取与分析等几个方面。样品制备上,当前多数公司在标记和测定前都要对样品进行一定
PCR基因芯片上荧光PCR反应的研究(二)
1.3.2 PCR-SSCP方法分析按照我室常规进行。 1.3.3 Taqman荧光探针 以发现的ALAS2基因第五外显子点突变为中心设计,序列如下: 5’ (荧光集团)FAM-CAAGATCATAGAGAAGAAAC- TAMRA(淬灭集团) 3’,设计Taqman荧光PCR反应的上下
the-Lancet:多重耐药性结核病治疗新突破
根据麦吉尔大学研究所资深科学家Dick Menzies博士领导的一项新的国际合作研究,已发现几种新药比传统治疗多药耐药结核病(MDR-TB)更有效。这些研究结果促成了对全球结核病治疗指南的彻底改革,这项研究结果今天发表在英国医学杂志《Lancet》上。 每年大约有600,000例多重耐药性结核
基因芯片-原理
基因芯片(gene chip)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,可以基因芯片的测序原理用图11-5-1来说明。在一块基片表面固定了序列已知的八核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与
基因芯片概念
基因芯片(又称 DNA 芯片、生物芯片)技术就是顺应这一科学发展要求的产物,它的出现为解决此类问题提供了光辉的前景。该技术系指将大量(通常每平方厘米点阵密度高于 400 )探针分子固定于支持物上后与标记的样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。通俗地说,
基因芯片简介
随着人类基因组(测序)计划(Human genome project)的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组序列得以测定,基因序列数据正在以前所未有的速度迅速增长。然而,怎样去研究如此众多基因在生命过程中所担负的功能就成了全世界生命科学工作者共同的课题。为此,建立
基因芯片-简介
随着人类基因组(测序)计划( Human genome project )的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组序列得以测定,基因序列数据正在以前所未有的速度迅速增长。然而 , 怎样去研究如此众多基因在生命过程中所担负的功能就成了全世界生命科学工作者共
基因芯片的研究方向及当前面临的困难
尽管基因芯片技术已经取得了长足的发展,得到世人的瞩目,但仍然存在着许多难以解决的问题,例如技术成本昂贵、复杂、检测灵敏度较低、重复性差、分析泛围较狭窄等问题。这些问题主要表现在样品的制备、探针合成与固定、分子的标记、数据的读取与分析等几个方面。样品制备上,当前多数公司在标记和测定前都要对样品进行一定