磁透镜的聚焦原理

如果一个带电粒子进入匀强磁场时,其速度v的方向与磁感强度B的方向成任意角度θ,则可将v分解成平行于B和垂直于B的两个分量V∥和V⊥。因磁场的作用,垂直于B的速度分量V⊥虽不改变大小,却不断改变方向。在垂直于B的平面内作匀速圆周运动。平行于B的速度分量V∥不变,其运动是沿B方向的匀速直线运动。这两种运动的合成,为螺旋线运动。此带电粒子作螺旋运动时,螺旋线的半径(即电子在磁场中作圆运动的回旋半径)为: r=mV⊥/qB=mVsinθ/(qB) 粒子每转一周前进的距离称为螺距,用符号表示,则: h=V∥T=2πmVcosθ/(qB) 上式中的T是粒子转过一周所需的时间,称为回转周期。 在匀强磁场中某点A处有一束带电粒子,当带电粒子的速度v与B的夹角很小、各粒子速率v大致相同时,这些粒子具有相同的螺距。经一个回转周期后,他们各自经过不同的螺距轨道重新会聚到A'点。发散粒子依靠磁场作用会聚于一点的现象称为磁聚焦。它与......阅读全文

等电聚焦凝胶电泳原理

等电聚焦凝胶电泳是依据蛋白质分子的静电荷或等电点进行分离的技术,等电聚焦中,蛋白质分子在含有载体两性电解质形成的一个连续而稳定的线性pH梯度中电泳。载体两性电解质是脂肪族多氨基多羧酸,在电场中形成正极为酸性,负极为碱性的连续的pH梯度。蛋白质分子在偏离其等电点的pH条件下带有电荷,因此可以在电场中移

聚焦层析原理及分析方法

  聚焦层析也是一种柱层析。因此,它和另外的层析一样,照例具有流动相,其流动相为  多缓冲剂,固定相为多缓冲交换剂。  聚焦层析原理可以从PH梯度溶液的形成、蛋白质的行为和聚焦效应三方面来阐述。  1、PH梯度溶液的形成  在离子交换层析中,PH梯度溶液的形成是靠梯度混合仪实现的。例如,当使用阴离子

电磁透镜色差的相关介绍

  色差是由于成像电子的能量不同或波动,电子在透镜磁场中运动速度不同,从物面上一点散射的电子不能聚焦在像面上同一点而形成的像差,如图1-6所示。  不同能量的电子聚焦在不同位置,像平面上也有一个最小半径为的散焦斑。同样将折算到物平面上,得到半径为的圆斑,用表示色差,的大小由下式来确定:  式中,是电

扫描电子显微镜的结构原理

扫描电子显微镜电子枪发射出的电子束经过聚焦后汇聚成点光源;点光源在加速电压下形成高能电子束;高能电子束经由两个电磁透镜被聚焦成直径微小的光点,在透过最后一级带有扫描线圈的电磁透镜后,电子束以光栅状扫描的方式逐点轰击到样品表面,同时激发出不同深度的电子信号。此时,电子信号会被样品上方不同信号接收器的探

扫描电子显微镜的结构原理图

扫描电子显微镜电子枪发射出的电子束经过聚焦后汇聚成点光源;点光源在加速电压下形成高能电子束;高能电子束经由两个电磁透镜被聚焦成直径微小的光点,在透过最后一级带有扫描线圈的电磁透镜后,电子束以光栅状扫描的方式逐点轰击到样品表面,同时激发出不同深度的电子信号。此时,电子信号会被样品上方不同信号接收器的探

扫描电子显微镜的基本原理

扫描电子显微镜电子枪发射出的电子束经过聚焦后汇聚成点光源;点光源在加速电压下形成高能电子束;高能电子束经由两个电磁透镜被聚焦成直径微小的光点,在透过最后一级带有扫描线圈的电磁透镜后,电子束以光栅状扫描的方式逐点轰击到样品表面,同时激发出不同深度的电子信号。此时,电子信号会被样品上方不同信号接收器的探

激光共聚焦显微镜原理

  在普通宽视野光学显微镜中,整个标本全部都被水银弧光灯或氙灯的光线照明,图像可以用肉眼直接观察。 同时,来自焦点以外的其他区域的荧光对结构的干扰较大,尤其是标本的厚度在 2um 以上时,其影响更为明显。  激光共聚焦显微镜脱离了传统光学显微镜的场光源和局部平面成像模式,采用激光束作光源,激光束经照

激光共聚焦显微镜原理

在普通宽视野光学显微镜中,整个标本全部都被水银弧光灯或氙灯的光线照明,图像可以用肉眼直接观察 。 同时,来自焦点以外的其他区域的荧光对结构的干扰较大,尤其是标本的厚度在 2um 以上时,其影响更为明显。激光共聚焦显微镜脱离了传统光学显微镜的场光源和局部平面成像模式,采用激光束作光源,激光束经照明针孔

激光共聚焦显微镜原理

在普通宽视野光学显微镜中,整个标本全部都被水银弧光灯或氙灯的光线照明,图像可以用肉眼直接观察。 同时,来自焦点以外的其他区域的荧光对结构的干扰较大,尤其是标本的厚度在 2um 以上时,其影响更为明显。图2 激光扫描共聚焦显微镜光路图激光共聚焦显微镜脱离了传统光学显微镜的场光源和局部平面成像模式,采用

双聚焦质谱仪的结构与原理叙述

  结构与原理  双聚焦磁质谱仪由一个磁场质量分析器和一个静电场能量分析器构成。它的主要组成部分为:1.产生离子并加速聚焦的离子源;2.真空系统;3.用于聚焦、偏转和过滤飞行离子束的磁场质量分析器和静电场能量分析器;4.收集检测信号的检测器 [2] 。  样品在离子源中被离子化,带有一个或者几个电荷

电磁透镜像散的相关介绍

  像散  像散是由透镜磁场的非旋转对称引起的像差。透镜的极靴孔加工误差,上、下极靴的轴线错位、极靴材质不均以及极靴孔周围的局部污染等,都会引起透镜的磁场产生椭圆度。椭圆磁场长、短轴方向上的聚焦能力存在差异,结果成像物点通过透镜后不能在像平面上聚焦于一点(图1-5)。  同样在长、短轴聚焦点之间有一

飞纳电镜在观察磁性材料的应用

常常有用户询问小编:飞纳电镜能否测试磁性材料?有那些注意事项?今天,我们将一一解答。 为什么有的用户会有这样的顾虑和担忧? 扫描电子显微镜原理上是利用聚焦电子束在测试样品上表面扫描,激发出各种物理信息。电子束需要利用电磁透镜进行细化和聚焦,若样品本身具有明显磁性会干扰电磁透镜的正常工作,导致无法使样

电子显微镜的问世

电子显微镜问世在光学显微穷途末路之时,人们发现了电子波。这要归功于法国物理学家德布罗意提出的波粒二象性的设想,即电子既可以视为粒子,也可以用波来描述,并且他还给出了电子波长和电子运动速度的反比关系。如果给电子足够的加速电压,比如60千伏,那么其波长仅有0.005纳米,如果用这么小波长的波作为光源制作

磁聚焦现象的概念

磁聚焦现象一般都是利用载流螺线管中激发的磁场来实现的。在实际应用中,大多用载流的短线圈所激发的非均匀磁场来实现磁聚焦作用。由于这种线圈的作用与光学中的透镜作用相似,故称磁透镜。在显像管、电子显微镜和真空器件中,常用磁透镜来聚焦电子束。

激光共聚焦显微镜工作原理

 激光共聚焦显微镜是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,

激光共聚焦显微镜的原理

  在普通宽视野光学显微镜中,整个标本全部都被水银弧光灯或氙灯的光线照明,图像可以用肉眼直接观察 。 同时,来自焦点以外的其他区域的荧光对结构的干扰较大,尤其是标本的厚度在 2um 以上时,其影响更为明显。  激光共聚焦显微镜脱离了传统光学显微镜的场光源和局部平面成像模式采用激光束作光源,激光束经照

激光共聚焦显微镜工作原理

  激光共聚焦显微镜是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学

激光共聚焦显微镜的原理

激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印

激光共聚焦显微镜工作原理

激光共聚焦显微镜工作原理:  奥林巴斯激光共聚焦显微镜是一种能够获取到信号的探测器,它的工作原理是一个点光源经过荧光显微镜后会成像为一个被称为"艾里斑"的扩大的光斑。在一台标准的白光干涉共聚焦显微镜中,焦平面以外的发射光会被针孔挡住,针孔的尺寸决定了有多少艾里斑能够进入探测器内。针孔缩的越小,得到的

共聚焦扫描显微镜的成像原理

  采用点光源照射标本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜收集,并沿原照射光路回送到由双向色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。两者的几何尺寸一致,约100-200nm;相对于焦平面上的光点,两者是共

等电聚焦电泳的基本原理

  在IEF的电泳中,具有pH梯度的介质其分布是从阳极到阴极,pH值逐渐增大。如前所述,蛋白质分子具有两性解离及等电点的特征,这样在碱性区域蛋白质分子带负电荷向阳极移动,直至某一pH位点时失去电荷而停止移动,此处介质的pH恰好等于聚焦蛋白质分子的等电点(pl)。同理,位于酸性区域的蛋白质分子带正电荷

激光扫描共聚焦显微镜技术原理

光学显微镜作为细胞生物学的研究工具,可以分辨出小于其照明光源波长一半的细胞结构。随着光学、视频、计算机等技术飞速发展而诞生的激光扫描共聚焦显微镜 (Laser Scanning Confocal Microscope,LSCM),则使现代显微镜有能力研究和分析细胞在变化过程中的结构。特别是

激光共聚焦显微镜工作原理

 激光共聚焦显微镜是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,

激光共聚焦显微镜工作原理

  激光共聚焦显微镜是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学

激光扫描共聚焦原理和样品前期处理

  1、激光扫描共聚焦显微镜用途  激光扫描共聚焦显微镜(Confocal laser scanning microscope,CLSM)是近代最先进的细胞生物医学分析仪器之一。目前,激光扫描共聚焦显微技术已用于细胞形态定位、立体结构重组、动态变化过程等研究,并提供定量荧光测定、定量图像分析等实用研

电磁透镜的像差球差的相关介绍

  按照衍射理论计算结果,光学透镜的分辨率是波长的一半。对于电磁透镜来说,目前还远远没有达到这一水平。主要原因是除了衍射效应对分辨率的影响外,还有像差对分辨率的影响。电磁透镜的主要像差有球差、像散和色差。  球差  球差是由电磁透镜近轴区域磁场和远轴区域磁场对电子束的折射能力不同而产生的像差。近轴区

扫描电镜(SEM)电子透镜的介绍

扫描电镜(SEM)利用电子束对样品进行纳米级分辨率的图像分析。灯丝释放出电子,形成平行的电子束。然后,电子束通过透镜聚焦于样品表面。电子透镜是如何工作的?存在哪几种电子透镜?电子透镜是如何聚焦电子的?扫描电镜:电子、电子束和电子透镜电子从灯丝中释放出来,然后平行于电子透镜。电子束穿过镜筒——由一组透

日立透射电子显微镜与光学显微镜几个方面的区别

 分辨能力是日立透射电子显微镜的重要指标,它与透过样品的电子束入射锥角和波长有关。可见光的波长约为300~700纳米,而电子束的波长与加速电压有关。当加速电压为50~100千伏时,电子束波长约为0.0053~0.0037纳米。由于电子束的波长远远小于可见光的波长,所以即使电子束的锥角仅为光学显微镜的

日立透射电子显微镜与光学显微镜几个方面的区别

 分辨能力是日立透射电子显微镜的重要指标,它与透过样品的电子束入射锥角和波长有关。可见光的波长约为300~700纳米,而电子束的波长与加速电压有关。当加速电压为50~100千伏时,电子束波长约为0.0053~0.0037纳米。由于电子束的波长远远小于可见光的波长,所以即使电子束的锥角仅为光学显微镜的

透射电子显微镜的照明系统

 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率、高放大倍数的电子光学仪器。  There are four main components to a transmission electron microscope:  (1) an electron optical