磁透镜的聚焦原理

如果一个带电粒子进入匀强磁场时,其速度v的方向与磁感强度B的方向成任意角度θ,则可将v分解成平行于B和垂直于B的两个分量V∥和V⊥。因磁场的作用,垂直于B的速度分量V⊥虽不改变大小,却不断改变方向。在垂直于B的平面内作匀速圆周运动。平行于B的速度分量V∥不变,其运动是沿B方向的匀速直线运动。这两种运动的合成,为螺旋线运动。此带电粒子作螺旋运动时,螺旋线的半径(即电子在磁场中作圆运动的回旋半径)为: r=mV⊥/qB=mVsinθ/(qB) 粒子每转一周前进的距离称为螺距,用符号表示,则: h=V∥T=2πmVcosθ/(qB) 上式中的T是粒子转过一周所需的时间,称为回转周期。 在匀强磁场中某点A处有一束带电粒子,当带电粒子的速度v与B的夹角很小、各粒子速率v大致相同时,这些粒子具有相同的螺距。经一个回转周期后,他们各自经过不同的螺距轨道重新会聚到A'点。发散粒子依靠磁场作用会聚于一点的现象称为磁聚焦。它与......阅读全文

磁透镜的聚焦原理

  如果一个带电粒子进入匀强磁场时,其速度v的方向与磁感强度B的方向成任意角度θ,则可将v分解成平行于B和垂直于B的两个分量V∥和V⊥。因磁场的作用,垂直于B的速度分量V⊥虽不改变大小,却不断改变方向。在垂直于B的平面内作匀速圆周运动。平行于B的速度分量V∥不变,其运动是沿B方向的匀速直线运动。这两

电磁透镜及其聚焦原理

由于轴对称弯曲磁场对电子束有聚焦作用,因而可以得到电子光学像。我们称这种具有轴对称弯曲磁场装置构成的电子透镜为电磁透镜(electron magnetic lenses)。由于电磁透镜磁场非均匀分布,物、像点在磁场之外,电子在磁场中既受到轴向分量的作用,又受到径向分量的作用,使平行于轴进入磁场的电子

简述电磁透镜的聚焦原理

1、聚焦镜聚光镜处在电子枪的下方,一般由2~3级组成,从上至下依次称为第1、第2聚光镜(以C1 和C2表示)。关于电磁透镜的结构和工作原理已经在上一节中介绍,电镜中设置聚光镜的用途是将电子枪发射出来的电子束流会聚成亮度均匀且照射范围可调的光斑,投射在下面的样品上。C1和C2的结构相似,但极靴形状和工

关于磁透镜的磁聚焦的原理简介

  磁透镜是指能够把匀速带电粒子束会聚,并且把这样的束程中的物体形成像的轴对称磁场。这样的磁场(磁透镜)可以由螺线管、电磁铁或永磁体产生。用于电子和离子显微镜、带电粒子加速器及其他装置中。  如果一个带电粒子进入匀强磁场时,其速度v的方向与磁感强度B的方向成任意角度θ,则可将v分解成平行于B和垂直于

透射电镜磁透镜的光学性质和聚焦原理

磁透镜的光学性质和聚焦原理  电镜实质上是电子透镜的组合。电子透镜有静电透镜和磁透镜二种。磁透镜的聚焦原理:电子在进入磁场后受到磁场(洛伦兹力)作用,使电子束产生两种运动——旋转和折射,而电子在磁场中的旋转与折射是各自进行的。因此,在讨论磁透镜的聚焦作用时就可以暂不考虑电子的旋转,这样,电子在磁透镜

磁透镜的工作原理

如果一个带电粒子进入匀强磁场时,其速度v的方向与磁感强度B的方向成任意角度θ,则可将v分解成平行于B和垂直于B的两个分量V∥和V⊥。因磁场的作用,垂直于B的速度分量V⊥虽不改变大小,却不断改变方向。在垂直于B的平面内作匀速圆周运动。平行于B的速度分量V∥不变,其运动是沿B方向的匀速直线运动。这两种运

磁透镜的工作原理

如果一个带电粒子进入匀强磁场时,其速度v的方向与磁感强度B的方向成任意角度θ,则可将v分解成平行于B和垂直于B的两个分量V∥和V⊥。因磁场的作用,垂直于B的速度分量V⊥虽不改变大小,却不断改变方向。在垂直于B的平面内作匀速圆周运动。平行于B的速度分量V∥不变,其运动是沿B方向的匀速直线运动。这两种运

电磁透镜的定义和工作原理

定义:通电的线圈产生的磁场所构成的透镜。还有一种透镜为静电透镜:静电场构成的透镜。钨阴极和LaB6阴极采用电磁透镜,场发射电镜的第一聚光镜为静电透镜,第二聚光镜为电磁透镜。可见光可以通过玻璃透镜汇聚成像,而能让运动的电子产生偏折的方法是添加电场或磁场。工作原理:电子束通过电磁透镜时,由于电子带负电,

磁聚焦的原理

  磁聚焦的原理:  如果一个带电粒子进入匀强磁场时,其速度V的方向与磁感强度 的方向成任意角度θ,则可将V分解成平行于B和垂直于B的两个分量V∥和V⊥。因磁场的作用,垂直于B的速度分量V⊥虽不改变大小,却不断改变方向。在垂直于B的平面内作匀速圆周运动。平行于B的速度分量V∥不变,其运动是沿B方向的

磁透镜的功能特点

磁透镜是指能够把匀速带电粒子束会聚,并且把这样的束程中的物体形成像的轴对称磁场。这样的磁场(磁透镜)可以由螺线管、电磁铁或永磁体产生。用于电子和离子显微镜、带电粒子加速器及其他装置中。

磁透镜的相关介绍

  磁聚焦现象一般都是利用载流螺线管中激发的磁场来实现的。在实际应用中,大多用载流的短线圈所激发的非均匀磁场来实现磁聚焦作用。由于这种线圈的作用与光学中的透镜作用相似,故称磁透镜。在显像管、电子显微镜和真空器件中,常用磁透镜来聚焦电子束。

磁透镜的概念介绍

磁透镜是指能够把匀速带电粒子束会聚,并且把这样的束程中的物体形成像的轴对称磁场。这样的磁场(磁透镜)可以由螺线管、电磁铁或永磁体产生。用于电子和离子显微镜、带电粒子加速器及其他装置中。

磁透镜的功能介绍

磁聚焦现象一般都是利用载流螺线管中激发的磁场来实现的。在实际应用中,大多用载流的短线圈所激发的非均匀磁场来实现磁聚焦作用。由于这种线圈的作用与光学中的透镜作用相似,故称磁透镜。在显像管、电子显微镜和真空器件中,常用磁透镜来聚焦电子束。

电磁透镜简介

  电子波和光波不同,不能通过玻璃透镜会聚成像。但是轴对称的非均匀电场和磁场则可以让电子束折射,从而产生电子束的会聚与发散,达到成像的目的。人们把用静电场构成的透镜称之为“静电透镜”。把电磁线圈产生的磁场所构成的透镜称之为“电磁透镜”。  电子作为带电粒子在磁场中运动会受到洛伦兹力的作用,轴旋转对称

磁透镜的应用介绍

离子显微镜E.W.弥勒于1951年发明的一种分辨率极高、能直接用于观察金属表面原子的分析装置,简称FIM。FIM(Field Ion Microscope)是最早达到原子分辨率,也就是最早能看得到原子尺度的显微镜。FIM(FieldIonMicroscope)是最早达到原子分辨率,也就是最早能看得到

磁透镜粒子加速器

  粒子加速器(particle accelerator)全名为“荷电粒子加速器”,是使带电粒子在高真空场中受磁场力控制、电场力加速而达到高能量的特种电磁、高真空装置。是人为地提供各种高能粒子束或辐射线的现代化装备。  日常生活中常见的粒子加速器有用于电视的阴极射线管及X光管等设施。一部分低能加速器

共聚焦显微镜原理

     从一个点光源发射的探测光通过透镜聚焦到被观测物体上,如果物体恰在焦点上,那么反射光通过原透镜应当汇聚回到光源,这就是所谓的共聚焦,简称共焦。共焦显微镜[Confocal Laser Scanning Microscope(CLSM或LSCM)]在反射光的光路上加上了一块半反半透镜(Beam

激光共聚焦的工作原理

检测针孔和光源针孔始终聚焦于同一点,使聚焦平面以外被激发的荧光不能进入检测针孔。激光共聚焦的工作原理简单表达就是它采用激光为光源,在传统荧光显微镜成像的基础上,附加了激光扫描装置和共轭聚焦装置,通过计算机控制来进行数字化图像采集和处理的系统。

磁透镜螺线管相关介绍

  在物理学里,术语螺线管指的是多重卷绕的导线,卷绕内部可以是空心的,或者有一个金属芯。当有电流通过导线时,螺线管内部会产生均匀磁场。螺线管是很重要的元件·。很多物理实验的正确操作需要有均匀磁场。螺线管也可以用为电磁铁或电感器。  通电螺线管的极性跟电流方向间的关系,可以用右手螺旋定则来判断。就是用

磁透镜与光学透镜的比较

  光学透镜成像时,物距L1、象距L2、焦距f三者之间满足右图1所示关系式:  由于光学透镜的焦距f是不能改变的,要满足成像条件,必须同时改变L1和L2。  与光学透镜相似,电磁透镜成像时也必须满足式。但磁透镜的焦距可以通过改变线圈中通过电流的大小来调节。采用磁透镜成像时,可以在固定L1的情况下,改

共聚焦显微镜的原理

  传统的 光学显微镜使用的是场光源, 标本上每一点的图像都会受到邻近点的 衍射或 散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明 针孔形成 点光源对标本内 焦平面的每一点扫描,标本上的被照射点,在探测针孔处 成像,由探测针孔后的光电倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在

聚焦层析的原理和方法特点

是利用层析过程中固定相偶联具有两性解离功能的有机分子为配基,与流动相中某些具有两性粒子发生等电聚焦反应而进行分离的一种方法。聚焦层析也是一种柱层析。因此,它和另外的层析一样,照例具有流动相,其流动相为 多缓冲剂,固定相为多缓冲交换剂。

聚焦离子束的工作原理

液态金属离子源离子源是聚焦离子束系统的心脏,真正的聚焦离子束始于液态金属离子源的出现,液态金属离子源产生的离子具有高亮度、极小的源尺寸等一系列优点,使之成为目前所有聚焦离子束系统的离子源。液态金属离子源是利用液态金属在强电场作用下产生场致离子发射所形成的离子源[1、2]。液态金属离子源的基本结构如图

共聚焦扫描仪的原理

激光扫描共聚焦扫描仪的主要原理是利用激光扫描束通过光栅针孔形成点光源,在荧光标记标本的焦平面上逐点扫描,采集点的光信号通过探测针孔到达光电倍增管(PMT),再经过信号处理,在计算机监视屏上形成图像。对于物镜焦平面的焦点处发出的光在针孔处可以得到很好的会聚,可以全部通过针孔被探测器接收。而在焦平面上下

激光共聚焦扫描显微技术原理

激光共聚焦扫描显微技术(Confocal laser scanning microscopy)是一种高分辨率的显微成像技术。普通的荧光光学显微镜在对较厚的标本进行观察时,来自观察点邻近区域的荧光会对结构的分辨率形成较大的干扰。共聚焦显微技术的关键点在于,每次只对空间上的一个点(焦点)进行成像,再通过

聚焦离子束的工作原理

   液态金属离子源离子源是聚焦离子束系统的心脏,真正的聚焦离子束始于液态金属离子源的出现,液态金属离子源产生的离子具有高亮度、极小的源尺寸等一系列优点,使之成为目前所有聚焦离子束系统的离子源。液态金属离子源是利用液态金属在强电场作用下产生场致离子发射所形成的离子源[1、2]。液态金属离子源的基本结

共聚焦显微镜技术原理

SURF技术的功能原理        NanoFocus共聚焦显微镜包括LED光源、旋转多针孔盘、带有压电驱动器的物镜和CCD相机。LED源通过多针孔盘(MPD)和物镜聚焦到样品表面上,从而反射光。反射光通过MPD的针孔减小到聚焦的部分,这落在CCD相机上。来自传统光学显微镜的图像包含清晰和模糊的细

共聚焦扫描仪的原理

激光扫描共聚焦扫描仪的主要原理是利用激光扫描束通过光栅针孔形成点光源,在荧光标记标本的焦平面上逐点扫描,采集点的光信号通过探测针孔到达光电倍增管(PMT),再经过信号处理,在计算机监视屏上形成图像。对于物镜焦平面的焦点处发出的光在针孔处可以得到很好的会聚,可以全部通过针孔被探测器接收。而在焦平面上下

聚焦离子束的工作原理

液态金属离子源离子源是聚焦离子束系统的心脏,真正的聚焦离子束始于液态金属离子源的出现,液态金属离子源产生的离子具有高亮度、极小的源尺寸等一系列优点,使之成为目前所有聚焦离子束系统的离子源。液态金属离子源是利用液态金属在强电场作用下产生场致离子发射所形成的离子源[1、2]。液态金属离子源的基本结构如图

激光聚焦显微镜的原理

激光聚焦显微镜是一种高分辨率的显微成像技术。普通的荧光光学显微镜在对较厚的标本(例如细胞)进行观察时,来自观察点邻近区域的荧光会对结构的分辨率形成较大的干扰。共聚焦显微技术的关键点在于,每次只对空间上的一个点(焦点)进行成像,再通过计算机控制的一点一点的扫描形成标本的二维或者三维图象。在此过程中,来