高效液相色谱键合相色谱法简述

键合相色谱法是由液-液色谱法即分配色谱发展起来的。键合相色谱法将固定相共价结合在载体颗粒上,克服了分配色谱中由于固定相在流动中有微量溶解,及流动相通过色谱柱时的机械冲击,固定相不断损失,色谱柱的性质逐渐改变等缺点。键合相色谱法可分为正常相色谱法和反相色谱法。正常相色谱法在正常相色谱法中共价结合到载体上的基团都是极性基团,如一级氨基、氰基、二醇基、二甲氨基和二氨基等。流动相溶剂是与吸附色谱中的流动相很相似的非极性溶剂,如庚烷、已烷及异辛烷等。由于固定相是极性,因此流动溶剂的极性越强,洗脱能力也越强,即极性大的溶剂是强溶剂。固定相与流动相的这种关系正好与液-固色谱法相同,称这种色谱法为正常相色谱法。尽管如此,正常相色谱法的分离原理主要根据化合物在固定相及流动相中分配系数的不同进行分离,它不适于分离几何异构体。2.反相色谱法在反相色谱法中共价结合到载体上的固定相是一些直链碳氢化合物,如正辛基等。流动相的极性比固定相的极性强。反相色谱法......阅读全文

高效液相色谱键合相色谱法简述

键合相色谱法是由液-液色谱法即分配色谱发展起来的。键合相色谱法将固定相共价结合在载体颗粒上,克服了分配色谱中由于固定相在流动中有微量溶解,及流动相通过色谱柱时的机械冲击,固定相不断损失,色谱柱的性质逐渐改变等缺点。键合相色谱法可分为正常相色谱法和反相色谱法。正常相色谱法在正常相色谱法中共价结合到载体

正相键合相色谱法

键合相色谱法正相键合相色谱法 氰基与氨基化学键合相 是正相键合色谱法较常用的固定相。流动相与以硅胶为固定相的吸附色谱法的流动相相似,也是烷烃(常用正已烷等)加适量极性调整剂而构成。氰基键合相的分离选择性与硅胶相似,但极性小于硅胶,即用相同的流动相及其它条件相同时,同一组分的保留时间将小于硅胶

键合相色谱法介绍

键合相色谱法是由液-液色谱法即分配色谱发展起来的。键合相色谱法将固定相共价结合在载体颗粒上,克服了分配色谱中由于固定相在流动中有微量溶解,及流动相通过色谱柱时的机械冲击,固定相不断损失,色谱柱的性质逐渐改变等缺点。键合相色谱法可分为正常相色谱法和反相色谱法。正常相色谱法在正常相色谱法中共价结合到载体

什么是正相键合相色谱法

  正相键合相色谱法  1. 氰基与氨基化学键合相  是正相键合色谱法较常用的固定相。流动相与以硅胶为固定相的吸附色谱法的流动相相似,也是烷烃(常用正已烷等)加适量极性调整剂而构成。氰基键合相的分离选择性与硅胶相似,但极性小于硅胶,即用相同的流动相及其它条件相同时,同一组分的保留时间将小于硅胶。许多

化学键合相色谱法

一. 原理“化学键合相色谱法”——采用化学键合相作固定相的液相色谱法。化学键合相是利用化学反应通过共价键将有机分子键合在载体(硅胶)表面,形成均一、牢固的单分子薄层而构成的固定相。其分离机理为吸附和分配两种机理兼有。对多数键合相来说,以分配机理为主。通常,化学键合相的载体是硅胶,硅胶表面有硅醇基,

什么是反相键合相色谱法

反相键合相色谱法  典型的反相键合色谱法是用非极性固定相和极性流动相组成的色谱体系。固定相,常用十八烷基(ODS或C)键合相;流动相常用甲醇-水或乙腈-水。非典型反相色谱系统,用弱极性或中等极性的键合相和极性大于固定相的流动相组成。  (1) 分离机制 反相键合相表面具有非极性烷基官能团,及未被取代

化学键合相色谱法

  一. 原理    “化学键合相色谱法”——采用化学键合相作固定相的液相色谱法。    化学键合相是利用化学反应通过共价键将有机分子键合在载体(硅胶)表面,形成均一、牢固的单分子薄层而构成的固定相。其分离机理为吸附和分配两种机理兼有。对多数键合相来说,以分配机理为主。    通常,化学键合相

液—液分配色谱法及化学键合相色谱

  流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。  a.正相液—液分配色谱法:流动相的极性小于固定液的极性。  b.反相液—液分配色谱法:流动相的极性大于固定液的极性。  液—液分配色谱法的缺点:尽管流

化学键合相色谱法的流动相

  二. 流动相   化学键合相色谱所用流动相的极性必须与固定相显著不同,根据流动相和固定相的相对极性不同分为:   1. 正相键合相色谱法:流动相极性小于固定相极性。   常用非极性溶剂如烷烃类溶剂,样品组分的保留值可用加入适当的有机溶剂(调节剂)的办法调节洗脱强度。常用有机溶剂为极性溶剂如氯仿、

化学键合相色谱法的原理

  一. 原理   “化学键合相色谱法”——采用化学键合相作固定相的液相色谱法。   化学键合相是利用化学反应通过共价键将有机分子键合在载体(硅胶)表面,形成均一、牢固的单分子薄层而构成的固定相。其分离机理为吸附和分配两种机理兼有。对多数键合相来说,以分配机理为主。   通常,化学键合相的载体是硅胶

键合相气相色谱仪分类

键合相气相色谱仪分类有多种。1、按分离目的可分:实验室键合相气相色谱仪和工业键合相气相色谱仪。2、按功能可分:分析型键合相气相色谱仪和制备型键合相气相色谱仪。3、按产地可分:国产键合相气相色谱仪和进口键合相气相色谱仪。4、按进样自动性可分:自动进样键合相气相色谱仪和手动进样键合相气相色谱仪。5、按分

键合相气相色谱仪分类

键合相气相色谱仪分类有多种。1、按分离目的可分:实验室键合相气相色谱仪和工业键合相气相色谱仪。2、按功能可分:分析型键合相气相色谱仪和制备型键合相气相色谱仪。3、按产地可分:国产键合相气相色谱仪和进口键合相气相色谱仪。4、按进样自动性可分:自动进样键合相气相色谱仪和手动进样键合相气相色谱仪。5、按分

正相键合相色谱仪简介

将固定液的官能团键合在载体表面构成化学键合相,以化学键合相为固定相的液相色谱仪称为化学键合相色谱仪,简称键合相色谱仪。固定相极性比流动相极性强的键合相色谱仪称为正相键合相色谱仪。一、固定相:在载体表面键合含中等极性或较强极性的官能团,如氰基(-CN)、氨基(-NH2)和二羟基等。二、流动相:以非极性

正相键合相色谱仪简介

将固定液的官能团键合在载体表面构成化学键合相,以化学键合相为固定相的液相色谱仪称为化学键合相色谱仪,简称键合相色谱仪。固定相极性比流动相极性强的键合相色谱仪称为正相键合相色谱仪。一、固定相:在载体表面键合含中等极性或较强极性的官能团,如氰基(-CN)、氨基(-NH2)和二羟基等。二、流动相:以非极性

如何选择反相键合相色谱法的固定相

键合相色谱法是由液-液色谱法即分配色谱发展起来的。键合相色谱法将固定相共价结合在载体颗粒上,克服了分配色谱中由于固定相在流动中有微量溶解,及流动相通过色谱柱时的机械冲击,固定相不断损失,色谱柱的性质逐渐改变等缺点。键合相色谱法可分为正常相色谱法和反相色谱法。反相色谱法在反相色谱法中共价结合到载体上的

键合相色谱仪分类

键合相色谱仪分类有多种。1、按分离目的可分:实验室键合相色谱仪和工业键合相色谱仪。2、按固定相和流动相的极性大小可分:正相键合相色谱仪和反相键合相色谱仪。3、按固定相物理状态可分:键合相气液色谱仪和键合相液液色谱仪。4、按流动相物理状态可分:气相键合相色谱仪和液相键合相色谱仪。5、按用途可分:生物色

键合相色谱仪键合相的性能指标与特点

键合相色谱仪的键合相是通过化学反应将官能团键合在键合相色谱仪的载体表面上所形成的固定相。一、性能指标:1、含碳量:指键合在硅胶表面上的烷基所含碳的质量占固定相质量的比例。含碳量随链长而增大,从3%~22%。2、覆盖度:指硅胶被键合后,参与反应的硅醇基数目占硅胶表面硅醇基总数的比例。二、特点:1、使用

高效液相色谱仪化学键合相解析

高效液相色谱仪化学键合相有 Si-O-C 键型、Si-N 或 Si-C 键型、Si-O-Si-C 键型等。一、Si-O-C 键型:酯化反应是最早用于制备键合相的反应。用硅羟基 Si-OH 和醇类 R-OH 通过酯化反应制得的单分子层硅酸酯易水解,醇解,热稳定性差,现已不大使用。二、Si-N 或 Si

反相键合相色谱法常见的固定相和流动相是什么

在反相色谱法中共价结合到载体上的固定相是一些极性很弱的直链碳氢化合物,如正辛基等。在反相色谱中的流动相极性要很强,而水是极性最强的溶剂。所以常常用水和不同浓度的、可以与水混溶的有机溶剂混合,以得到不同强度的流动相,这些有机溶剂称为修饰剂。反相色谱中最常用的有机溶剂有甲醇和乙腈,此外,乙醇、四氢呋喃、

键合硅胶高效液相色谱柱使用中应注意哪些基本问题

这个问题比较难回答。因为注意的东西比较多,比如:首先是色谱柱的方向问题。大多数色谱柱会标明方向。这个傻子都知道,安装的时候要顺着方向安装。不过也有一些色谱柱没有方向,这些是双相填料的色谱柱。第一次使用时的方向就是它的方向。不过所有的色谱柱都是,一旦开始使用,就不要转换方向。这样会损毁色谱柱。第二个是

键合硅胶高效液相色谱柱使用中应注意哪些基本问题

首先是色谱柱的方向问题。大多数色谱柱会标明方向。这个傻子都知道,安装的时候要顺着方向安装。不过也有一些色谱柱没有方向,这些是双相填料的色谱柱。第一次使用时的方向就是它的方向。不过所有的色谱柱都是,一旦开始使用,就不要转换方向。这样会损毁色谱柱。第二个是柱压问题。一般的色谱柱压力最好不要超过20MPa

键合相液相色谱仪的键合固定相简介

键合相液相色谱仪的键合固定相是利用化学反应将有机分子键合到硅胶载体表面上而形成的固定相。一、优点:1、消除了载体表面的活性作用点和某些可能的催化活性。2、耐溶剂冲洗,使用过程中固定相不会流失。3、热稳定性好。4、表面改性灵活,容易获得重复性产品。5、载样量大,溶剂残留效应小,梯度洗脱平衡快。二、不足

键合相色谱仪的特点

键合相色谱仪是采用化学键合相作固定相的液相色谱仪。在液相色谱中,约有80%的分离问题采用键合相色谱解决。一、优点:通过改变流动相的组成和种类,可有效地分离非极性、极性和离子型等各种类型化合物。由于键合到载体上的基团不易流失,特别适合梯度淋洗。二、缺点:不能用于酸、碱度过大或存在氧化剂的缓冲溶液作流动

反相键合相色谱仪简介

将固定液的官能团键合在载体表面构成化学键合相,以化学键合相为固定相的液相色谱仪称为化学键合相色谱仪,简称键合相色谱仪。流动相极性比固定相极性强的键合相色谱仪称为反相键合相色谱仪。一、固定相:在载体表面键合含弱极性或中等极性的官能团,如十八烷基硅烷、辛烷基、甲基和苯基等。二、流动相:以水为主体,加适量

反相键合相色谱仪简介

将固定液的官能团键合在载体表面构成化学键合相,以化学键合相为固定相的液相色谱仪称为化学键合相色谱仪,简称键合相色谱仪。流动相极性比固定相极性强的键合相色谱仪称为反相键合相色谱仪。一、固定相:在载体表面键合含弱极性或中等极性的官能团,如十八烷基硅烷、辛烷基、甲基和苯基等。二、流动相:以水为主体,加适量

极性键合相色谱仪流动相介绍

极性键合相色谱仪流动相分正相极性键合相色谱流动相和反相极性键合相色谱流动相。一、正相极性键合相色谱流动相:流动相由弱极性溶剂(烃类)和适量极性溶剂(醇和乙腈)组成。溶质保留规律:1、溶质的分离是基于亲水结构的差异。2、溶质的极性越大,保留值越大。3、流动相的极性越大,洗脱强度越大。二、反相极性键合相

反相键合相液相色谱仪流动相概述

反相键合相液相色谱仪流动相溶剂极性越低,洗脱能力越强。一、常用流动相:1、甲醇-水。2、乙腈-水。3、四氢呋喃-水。溶剂强度为水<甲醇<乙腈<四氢呋喃。系统2较系统1好,原因如下:系统2的粘度较系统1小,柱效好。粘度降低,柱压降低,传质阻力降低(溶质扩散阻力降低), 柱效升高。乙腈的紫外末端吸收较甲

高效液相色谱仪键合相为什么要封端

高效液相色谱仪键合相是将有机官能团通过化学反应共价键合到硅胶表面的游离羟基上而形成的固定相。目前,键合相广泛采用微粒多孔硅胶为基质,用烷烃二甲基氯硅烷或烷氧基硅烷与硅胶表面的游离硅醇基反应形成Si-O-Si-C键型的单分子膜而制成。硅胶表面的硅醇基密度约为5个/nm2,由于空间位阻效应,不可能将较大

高效液相色谱仪键合相的端基封尾

高效液相色谱仪键合相的端基封尾是用氯化三甲基硅烷等试剂与键合相硅胶表面的残留硅醇基反应,将残留硅醇基封锁起来的化学处理过程。一、原因:残余的硅醇基会对键合相的分离性能产生影响,特别是在非极性键合相的情况下,硅醇基的存在会降低硅胶表面的疏水性。对极性化合物或溶剂产生吸附,使键合相的分离性能改变。二、方

高效液相色谱仪键合相的端基封尾

高效液相色谱仪键合相的端基封尾是用氯化三甲基硅烷等试剂与键合相硅胶表面的残留硅醇基反应,将残留硅醇基封锁起来的化学处理过程。一、原因:残余的硅醇基会对键合相的分离性能产生影响,特别是在非极性键合相的情况下,硅醇基的存在会降低硅胶表面的疏水性。对极性化合物或溶剂产生吸附,使键合相的分离性能改变。二、方