稀释剂对3氧戊二酰胺类萃取剂萃取稀土的影响

为了从风化壳淋积型稀土矿铵盐浸出液中萃取分离出稀土离子,合成3种3-氧戊二酰胺类萃取剂N,N,N′,N′-四丁基-3-氧戊二酰胺、N,N,N′,N′-四己基-3-氧戊二酰胺和N,N,N′,N′-四辛基-3-氧戊二酰胺.考察在NH4Cl、(NH4)2SO4、NH4NO3这3种铵盐溶液中,萃取剂浓度和不同稀释剂类型对3种3-氧戊二酰胺类萃取剂萃取稀土离子的影响,并筛选出合适的稀释剂.结果表明:在NH4Cl溶液中,以正辛烷-正辛醇(体积比7:3)为稀释剂时,N,N,N′,N′-四丁基-3-氧戊二酰胺的萃取效果最好,对Y离子和Gd离子的单级萃取剂分别为为89%和91%,且萃取率随着萃取剂浓度的增大而增大,在相比为4:6时萃取率达到最大并几乎恒定.在(NH4)2SO4、NH4NO3溶液中,不同稀释剂对萃取效果的影响差别则较小.......阅读全文

稀释剂对3氧戊二酰胺类萃取剂萃取稀土的影响

为了从风化壳淋积型稀土矿铵盐浸出液中萃取分离出稀土离子,合成3种3-氧戊二酰胺类萃取剂N,N,N′,N′-四丁基-3-氧戊二酰胺、N,N,N′,N′-四己基-3-氧戊二酰胺和N,N,N′,N′-四辛基-3-氧戊二酰胺.考察在NH4Cl、(NH4)2SO4、NH4NO3这3种铵盐溶液中,萃取剂浓度和不

中性萃取酰胺类萃取剂

酰胺类萃取剂这类萃取剂最重要的是取代酰胺。酰胺分子中氨基—NH2上氢原子被烃基取代后的化合物称为取代酰胺。取代酰胺中的氨基不呈碱性,这是由于分子中氮原子孤电子对与羰基=C=O中的π电子形成一个p-π共轭体系;加之氧的负电性较大,从而使氮原子的电荷密度降低,而羰基氧原子的电荷密度升高,因此,这类有机化

盐酸介质类萃取剂对稀土元素的协同萃取机理研究

目前,稀土的分离提纯主要采用溶剂萃取法。P507-盐酸体系是目前应用最为广泛的稀土萃取分离体系,但P507在分离中重稀土元素时,存在中重稀土反萃难,反萃酸度高等问题;而Cyanex272萃取平衡水相酸度低,反萃容易,但其萃取容量低,将P507与Cyanex272进行有机匹配应用于重稀土元素的分离提纯

新型磷酰胺萃取剂其对稀土、钴、镍等离子的萃取分离

溶剂萃取法具有简单可连续操作、分离效率高、设备简单和处理量大等特点,因此溶剂萃取法在工业生产中是一种有效的分离金属离子的技术。近年来,设计并合成高效、清洁的金属离子萃取剂并用于金属离子的萃取分离受到了冶金工作者的广泛关注。本文主要合成了三种磷型萃取剂,P2N1O、P1N2O以及P3N,并研究了它们萃

酰胺类萃取剂氮杂冠醚对U(Ⅵ)Th(Ⅳ)Sr(Ⅱ)萃取研究

研究和开发新的萃取体系对于核能可持续发展具有重要意义。本论文主要研究了2个长链二酰胺类萃取剂、2个吡啶酰胺和1个氮杂冠醚共计5种萃取剂的合成与表征;研究了所合成的酰胺类萃取剂对U(Ⅵ)和Th(Ⅳ)的萃取;研究了氮杂冠醚对Sr(Ⅱ)的萃取;重点考察了上述萃取体系中稀释剂、硝酸浓度、萃取剂浓度、盐析剂以

酰胺类萃取剂的基本介绍

  这类萃取剂最重要的是取代酰胺。酰胺分子中氨基—NH2上氢原子被烃基取代后的化合物称为取代酰胺。取代酰胺中的氨基不呈碱性,这是由于分子中氮原子孤电子对与羰基=C=O中的π电子形成一个p-π共轭体系;加之氧的负电性较大,从而使氮原子的电荷密度降低,而羰基氧原子的电荷密度升高,因此,这类有机化合物都是

盐酸介质下酸性磷类萃取剂对稀土元素的萃取机理研究

目前,稀土的分离提纯主要采用溶剂萃取法。P507-盐酸体系是目前应用最为广泛的稀土萃取分离体系,但P507在分离中重稀土元素时,存在中重稀土反萃难,反萃酸度高等问题;而Cyanex272萃取平衡水相酸度低,反萃容易,但其萃取容量低,将P507与Cyanex272进行有机匹配应用于重稀土元素的分离提纯

稀释剂对ICP分析有哪些影响?

稀释剂的粘度对雾化进样、速率产生影响;密度、粘度和表面张力影响形成雾滴的初始致敬;沸点影响雾滴的挥发及进入ICP通道的有机溶剂蒸发量,从而影响ICP的稳定性。

稀释剂对ICP分析有哪些影响

稀释剂对ICP分析有哪些影响? 稀释剂的粘度对雾化进样、速率产生影响;密度、粘度和表面张力影响形成雾滴;沸点影响雾滴的挥发及进入ICP通道的有机溶剂蒸发量,从而影响ICP的稳定性。

中性萃取剂中性含氧萃取剂

中性含氧萃取剂主要是指醇(ROH)、醚 (ROR′)、酮 (RCOR′) 和酯 (RCOOR′)类化合物。萃取剂配位体氧原子的电子密度和分子的偶极矩是决定这类萃取剂萃取能力的主要因素。因此,它们的萃取能力随着其路易斯碱性的增强而增大。在醇、醚、酮、酯四类化合物中,只有醇分子中含有-OH。由于-OH的

中性萃取剂中性含硫萃取剂

中性含硫萃取剂中性含硫萃取剂对一些贵金属有很强的萃取能力,而对它们的选择萃取性能也较好。根据皮尔逊(Pearson)的硬软酸碱原理,萃取剂中作为电子给予体的硫是软碱,而汞、铂、钯、金、银、铊、碲等作为电子接受体则是软酸,按硬软酸碱原则中硬亲硬,软亲软的规律,含硫类萃取剂可与贵金属形成稳定的配合物而被

萃取剂及萃取物质的颜色

萃取原理是:复萃取的溶质在两种溶剂中的溶解度不同来将溶质从溶解度小的溶剂中萃取到溶解度大的溶剂中,溶质在萃取剂中的制溶解度一定大于溶质在原溶剂的溶解度,萃取后发生分层现象,分层一般都是根百据两种溶剂的密度来判断上下层,或者根据颜色等现象变化来判断. 如:从碘水中用四氯化碳、二硫化碳、苯等有机溶剂度萃

影响萃取法萃取效率的因素

中草药所含成分十分复杂,既有有效成分,又有无效成分和有毒成分。为了提高中草药的治疗效果,就要尽最大限度提取有效成分,去除无效成分及有毒成分。因此,中草药提取对于提高中药制剂的内在质量和临床疗效最为重要。但常用的提取方法(如煎煮法。回流法、浸渍法。渗漉法等)在保留有效成分,去除无效成分方面,存在着有效

萃取精馏原理及萃取剂的选择

萃取精馏是向混合液中加入第三组分(称为萃取剂或溶剂)以改变原组分的挥发度而得以分离。此处要求萃取剂的沸点较组分的沸点高得多,且不与组分形成恒沸液。萃取精馏常用于分离各组分沸点(挥发度)差别很小的溶液。 对于萃取精馏来说,萃取剂常常可以选择出许多种。一般说来,选择萃取剂的主要依据如下: (1)萃取剂的

萃取精馏原理及萃取剂的选择

萃取精馏是向混合液中加入第三组分(称为萃取剂或溶剂)以改变原组分的挥发度而得以分离。此处要求萃取剂的沸点较组分的沸点高得多,且不与组分形成恒沸液。萃取精馏常用于分离各组分沸点(挥发度)差别很小的溶液。 对于萃取精馏来说,萃取剂常常可以选择出许多种。一般说来,选择萃取剂的主要依据如下: (1)萃取剂的

萃取精馏原理及萃取剂的选择

萃取精馏是向混合液中加入第三组分(称为萃取剂或溶剂)以改变原组分的挥发度而得以分离。此处要求萃取剂的沸点较组分的沸点高得多,且不与组分形成恒沸液。萃取精馏常用于分离各组分沸点(挥发度)差别很小的溶液。 对于萃取精馏来说,萃取剂常常可以选择出许多种。一般说来,选择萃取剂的主要依据如下: (1)萃取

酰胺类除草剂分子印迹微球的制备、表征及固相萃取应用

分子印迹技术(Molecular imprinting technique, MIT)是一种集高分子化学、材料学、生物化学于一体的新兴技术,具备预定性、特异性和实用性的特点。由MIT制备的分子印迹聚合物(MIPs)是一种对模板分子具有特异选择性的材料,这种材料具有化学性质稳定,选择性和亲和性高,容易

萃取分离提取发酵液中1,3丙二醇

1,3-丙二醇是一种重要的有机合成原料中间体,主要运用于合成高性能聚合物的单体。由于生物发酵法生产1,3-丙二醇具有原料再生、反应条件温和等特点,因此将甘油转化成1,3-丙二醇技术已经引起了很大的关注。1,3-丙二醇沸点高、强亲水性,因此从组成成分复杂、1,3-丙二醇浓度低的发酵液中分离提取1,3-

关于萃取剂的基本应用介绍

  从应用角度出发,萃取剂应具备的条件是:  (1)萃取容量要大,即单位浓度的萃取剂对被萃取物质有较大的萃取能力;  (2)选择性要好,即对分离的有关物质有较大的分离系数;  (3)化学稳定性好,即萃取剂不易水解,加热不易分解,能耐酸、碱、盐、氧化剂或还原剂的作用,对设备腐蚀性小,并具有较高的抗辐射

萃取剂的作用

能与被萃取物形成溶于有机相的萃合物的化学试剂。在湿法冶金中,萃取剂的作用是与被萃取的金属通过配合化学反应生成萃合物萃入到有机相,又能通过某种化学反应使被萃取的金属从有机相反萃取到水相,由此而达到金属提纯与富集的目的。萃取剂是影响萃取工艺成败的最关键因素。

关于萃取剂的反萃取的基本介绍

  用反萃取剂使被萃取物从负载有机相返回水相的过程。为萃取的逆过程。反萃取剂主要起破坏有机相中被萃组分结构的作用,使被萃组分生成易溶于水的化合物,或生成既不溶于水也不溶于有机相的沉淀。反萃取过程具有简单、便于操作和周期短的特点,是溶剂萃取分离工艺流程中的一个重要环节。反萃取可将有机相中各个被萃组分逐

磁性石墨烯固相萃取测定水和绿茶中酰胺类除草剂残留

采用磁性石墨烯纳米复合材料作为磁性固相萃取剂进行磁性固相萃取,再进行分散液液微萃取,采用气相色谱建立了高灵敏测定环境水样和绿茶中5种酰胺类除草剂残留的方法。对影响萃取效率的诸因素进行了优化。在优化条件下,5种酰胺类除草剂的富集倍数在3399~4002之间,甲草胺、乙草胺、异丙甲草胺、丁草胺和丙草胺浓

固相萃取法的萃取剂是什么?

固相萃取法的萃取剂是固体,其工作原理基于:水样中欲测组分与共存干扰组分在固相萃取剂上作用力强弱不同,使它们彼此分离。固相萃取剂是含C18或C8、腈基、氨基等基团的特殊填料。

什么是萃取常见的萃取剂有哪些

萃取又称溶剂萃取或液液萃取(以区别于固液萃取,即浸取),亦称抽提(通用于石油炼制工业),是一种用液态的萃取剂处理与之不互溶的双组分或多组分溶液,实现组分分离的传质分离过程,是一种广泛应用的单元操作.利用相似相溶原理,萃取有两种方式:  液-液萃取,用选定的溶剂分离液体混合物中某种组分,溶剂必须与被萃

什么是萃取?常见的萃取剂有哪些?

萃取(Extraction)指利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来的方法。萃取又称溶剂萃取或液液萃取(以区别于固液萃取,即浸取),亦称抽提(通用于石油炼制工业),是一种用液态的萃取剂处

影响萃取的萃取效率的因素有哪些

萃取温度,被提取物的溶解度与温度有关2.固相物质与萃取剂的接触面积(通常将固体碾碎)3.溶剂的理化性质4.萃取过程中条件的维持,如加热或冷水浴,趁热过滤等。zd固-液萃取,也叫浸取,用溶剂分离固体混合物中的组分,如用水浸取甜回菜中的糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以

分配系数K对萃取过程的影响

在一定温度下,组分在两相间分配达到平衡时的浓度(单位:g / mL)比称为分配系数,用K 表示: 分配系数是决定试样能否分离的参数,其大小取决于试样性质,有机溶剂的性质和水(通常的一相)的性质。简单来说,一种物质在有机溶剂中的浓度/水中的浓度称为K的话。越大越容易把物质从水相中萃取到有机溶剂中。K越

P507N235萃取分离稀土工艺研究

稀土因其独特的物理化学性能,广泛应用于光、电、磁等材料,已成为高科技领域的战略性资源。现工业上常采用酸性膦类萃取剂P507或P204萃取分离稀土,但萃取工艺常采用氨水皂化而产生大量的NH4+,环境污染严重。 本课题利用P507萃稀土、N235萃酸性能,设计了P507-N235双溶剂萃取体系,可实现稀

离子液体用于己内酰胺萃取和氧氟沙星拆分的研究

离子液体对许多有机物、无机物具有良好的溶解性能,蒸汽压较低,不易挥发,在室温下可呈现液态,具有广阔的应用前景。在有机物分离方面,离子液体已用于萃取水中苯、苯酚等芳香类物质,但是在大宗非芳香族化学品和高附加值化学品分离方面,离子液体的萃取应用研究还处于起步阶段。本文以提高萃取分配系数、对映体分离的对映

固相萃取仪萃取效率的影响因素

固相萃取仪萃取效率的影响因素我们用固相萃取仪,Z关心的就是萃取效果。然而影响萃取效率的因素有以下几种:(1)填料(固定相)-核心选择合适的SPE柱填料是保证理想结果的前提。(2)洗脱溶剂的强度1.采用正相固定相,溶剂强度随其极性增强而增强。2.采用反向固定相,溶剂强度随其机性减弱而增强。(3)PH值