线粒体呼吸链复合物I、II、III、IV、V活性检测试剂盒原理
线粒体呼吸链复合物I (NADH氧化酶)、线粒体呼吸链复合物II(琥珀酸脱氢酶)是电子进入线粒体电子传递链(ETC)的主要元素。复合物I催化NADH氧化,复合物II催化琥珀酸氧化为延胡索酸。随后,辅酶Q(Q)形成辅酶(QH2),最终导致终端的电子受体O2减少。线粒体呼吸链复合物III(细胞色素c氧化还原酶)是线粒体氧化磷酸化的必要蛋白质。线粒体呼吸链复合物III是线粒体呼吸链的守门人和第三活性氧的主要来源。线粒体呼吸链复合物IV(细胞色素c氧化酶)是线粒体电子传递链的终端电子受体。复合物IV通过细胞色素c的氧化,将O2转化为水,此过程与线粒体细胞膜ATP合成有关。线粒体呼吸链复合物V与上述四个复合物一起完成氧化磷酸化生成ATP,称为ATP合成酶,又称F1F0-ATP酶。 图1:线粒体呼吸链线粒体呼吸链复合物活性的抑制会导致严重的线粒体功能失调,线粒体呼吸链复合物活性长期抑制可能会导致神经性疾病如:帕金森病、唐氏综合......阅读全文
线粒体呼吸链复合物I、II、III、IV、V活性检测试剂盒原理
线粒体呼吸链复合物I (NADH氧化酶)、线粒体呼吸链复合物II(琥珀酸脱氢酶)是电子进入线粒体电子传递链(ETC)的主要元素。复合物I催化NADH氧化,复合物II催化琥珀酸氧化为延胡索酸。随后,辅酶Q(Q)形成辅酶(QH2),最终导致终端的电子受体O2减少。线粒体呼吸链复合物III(细胞色素c
清华大学独家发Cell文章:三篇顶级杂志文章突破性成果
2012年,清华大学杨茂君教授研究组就曾在Nature杂志上发文,首次报道了II-型线粒体呼吸链复合物I;去年这一研究组又详细阐释了猪源呼吸链超级复合物I1III2IV1的原子分辨率三维结构;在8月25日Cell杂志最新一期,杨茂君教授研究组首次成功解析了比呼吸体更高聚集形式的呼吸链超超级复合物
Nature:从结构上揭示线粒体呼吸链超级复合物的组装机制
真核生物通过线粒体中的细胞呼吸产生生存所需的能量,这一过程被称为氧化磷酸化。在这个过程中,营养物质和氧气被转化为一种化学形式的能量:三磷酸腺苷(ATP)。这是由线粒体内的电子传递链建立的质子梯度实现的。这种质子梯度由线粒体内膜上的四种呼吸链复合物驱动。一项新的研究将断层扫描和分子模拟结合起来,揭示了
清华大学教授连发Cell,Nature文章:首发性结构生物学成果
生物通报道:呼吸作用是生物体最基础的生命活动之一,线粒体呼吸链复合物在其中扮演了重要的角色,这一复合物出现缺陷会导致多种疾病。2012年清华大学的杨茂君教授曾在Nature杂志上报道了II-型线粒体呼吸链复合物I的重要成果,这是当时世界上所解析的最大、也是最复杂的膜蛋白超级复合物结构。在此基础上
南京中医药大学特聘教授Nature发表重要成果
来自英国医学研究理事会(MRC)线粒体生物学部,MRC分子生物学实验室的研究人员,揭示出了哺乳动物线粒体呼吸链复合体I(complex I)的结构。他们的研究结果发布在8月10日的《自然》(Nature)杂志上。 MRC线粒体生物学部的Judy Hirst和MRC分子生物学实验室的Kutti
南京中医药大学特聘教授Nature发表重要成果
来自英国医学研究理事会(MRC)线粒体生物学部,MRC分子生物学实验室的研究人员,揭示出了哺乳动物线粒体呼吸链复合体I(complex I)的结构。他们的研究结果发布在8月10日的《自然》(Nature)杂志上。 MRC线粒体生物学部的Judy Hirst和MRC分子生物学实验室的Kutti
科学家把呼吸体结构探个究竟
12月2日,《细胞》发表了清华大学杨茂君研究组的论文,首次解析了猪心线粒体呼吸链超级复合物(呼吸体)原子分辨率下的冷冻电镜结构。 据了解,哺乳动物呼吸体是由44个膜蛋白在内的81个蛋白亚基(69种不同蛋白分子)构成的超大分子机器。杨茂君研究组通过不断优化呼吸体蛋白纯化与制样技术,创新电镜数据处
线粒体呼吸链膜蛋白复合物Ⅰ的结构揭晓
德国科学家成功揭示细胞线粒体呼吸链膜蛋白复合物Ⅰ的结构,并发现了分子复合物中的全新能量转换机制,细胞可通过该机制使用储存在营养中的能量。相关研究成果发表在7月1日的《科学》杂志网络版上。 有氧呼吸是动植物进行呼吸作用的主要形式,细胞在氧的参与下,通过酶的催化作用将糖类等有机
线粒体中的大型超级复合体决定了细胞呼吸的方式
真核生物通过线粒体中的细胞呼吸产生生存的能量,这一过程被称为氧化磷酸化。在这个过程中,营养物质和氧气被转化为一种化学形式的能量--ATP。这是由线粒体内的电子传输链建立的质子梯度实现的。该梯度由线粒体内膜上的一系列四个呼吸复合体驱动。发表在《自然》杂志上的一项研究结合了单粒子、断层扫描、分子模拟和生
测定I、II、III类残留溶剂
药物中的残留溶剂是指在药物活性成分、辅料及加工过程中使用的,但未能在净化过程中完全去除的溶剂。对于残留溶剂应尽可能地去除,使之符合ICH(人用药品注册技术要求国际协调会)指南的要求。本文介绍了应用压力平衡顶空系统,高效、精确地测定I、II和III类药品残留溶剂的方法。 药品生产过程中
Nature发布里程碑成果:破解细胞代谢调控新机制
西班牙CNIC心血管研究中心的科学家们确定了活细胞中能量中心的分子组织结构,这一研究成果公布在10月24日的Nature杂志上,不仅揭示了细胞代谢调控新机制,而且也是线粒体电子传递链 (mETC)组织研究的一个里程碑成果,同时这项研究也表明了mETC组合变化会影响代谢,这些不同的组成会导致不同的
靶向线粒体呼吸复合物I缺陷和解偶联功能在急性/颞叶...
靶向线粒体呼吸复合物I缺陷和解偶联功能在急性/颞叶癫痫遗传模型能产生抗癫痫作用 Kristina A. Simeone , Stephanie A. Matthews, Kaeli K. Samson, Timothy A. Simeone Pharmacology Department, Crei
Science:重大进展!揭示功能多样化的V型CRISPRCas系统
古生菌和细菌的CRISPR/Cas系统保护它们的宿主免受噬菌体和其他的可移动遗传元件的影响。根据最新的分类标准,CRISPR/Cas系统可分为两大类:第1类CRISPR/Cas系统和第2类CRISPR/Cas系统。 第1类CRISPR/Cas系统分为I型CRISPR/Cas系统(标签基因为Ca
长期运动对老年小鼠骨骼肌线粒体复合物的影响
摘要 目的:研究长期运动训练对老年小鼠骨骼肌线粒体复合物 I 和复合物 Ⅳ活性的影响,并探讨其机制。方法:以C57 BL/6J雄性小鼠跑转笼为运动方式,通过分光光度法和极谱氧电极法测定线粒体复合物 I和复合物 Ⅳ的活性。 结果:随着小鼠年龄的增长,骨骼肌线粒体复合物 I (NADH脱氢酶)活性显著下
H-I-V-的-检-测-与-分-析_H-IV-蛋白的检测
实验步骤 基 本 方 案 1 免 疫 印迹 法 检测 H IV 蛋白本方案用蛋白质提取法定量测定细胞样品中病毒蛋白的含量。用 抗 H I V -血清及 125I标记的葡萄球菌蛋白 A 来进行检测。也 可 以 用 酶 联 二 抗(生 物 素 化 的 抗 人 I g G 抗体)和适当的颜色指示剂(亲和素
线粒体呼吸链酶的疾病
线粒体呼吸链酶缺陷会造成线粒体病,线粒体病主要包括:母系遗传Leigh综合征,线粒体肌病,多系统疾病、心肌病、进行性眼外肌麻痹,Leer遗传性视神经病,糖尿病和耳聋、共济失调舞蹈病、细胞外基质慢性游走性红斑、进行性眼外肌麻痹、肌红蛋白尿电机神经元疾病,铁粒幼细胞贫血、MERRF-线粒体肌病、肌阵
纯化线粒体呼吸控制率(RCR)定量检测试剂盒使用说明
纯化线粒体呼吸控制率(RCR)定量检测试剂盒主要用途纯化线粒体呼吸控制率(RCR)定量检测试剂是一种旨在通过极谱法检测系统(polarographic system)测定新鲜活体线粒体在ADP存在(III态呼吸)与否(IV态呼吸)的情况下溶解氧(dissolved oxygen)的消耗差异,
Cell:首次发现针对III型CRISPRCas系统的蛋白抑制剂
如果说CRISPR复合物听起来很熟悉,那是因为它们是新一波基因组编辑技术的最前沿。CRISPR/Cas系统是目前发现存在于大多数细菌与所有的古菌中的一种免疫系统,被用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 在CRISPR/Cas系统中,CRISPR是规律间隔性成簇短回文重复序列(cl
呼吸链复合物生成机理揭开
线粒体是细胞的“动力工厂”,而其中呼吸链复合物起着重要作用,只是一直以来人们都不知道这些复合物是如何生成的。现在,德国哥廷根的科学家研究表明,新发现的蛋白复合物“MITRAC”是实现这一过程的关键。相关成果发表在12月21日的《细胞》杂志上。 众所周知,线粒体是真核细胞中由双层高度特化的单
在线粒体呼吸链研究领域取得重大研究突破
在“蛋白质机器与生命过程调控”重点专项的支持下,我国科学家突破性地解析了人源呼吸链蛋白质复合物最高级的组成形式——超超级复合物(MCI2III2IV2)中高分辨率三维结构和超级复合物(SCI1III2IV1)的原子分辨率结构。 呼吸作用是生物体内最基础的能量代谢活动之一,线粒体呼吸链的研
我国线粒体呼吸链研究取得重大突破
在“蛋白质机器与生命过程调控”重点专项的支持下,我国科学家突破性地解析了人源呼吸链蛋白质复合物最高级的组成形式——超超级复合物(MCI2III2IV2)中高分辨率三维结构和超级复合物(SCI1III2IV1)的原子分辨率结构。 呼吸作用是生物体内最基础的能量代谢活动之一,线粒体呼吸链的研究是
冷冻电镜助力|揭示呼吸链复合物III保持稳定的结构基础
中国科学院生物物理研究所孙飞课题组与德国马普研究所Hartmut Michel课题组在国际期刊《德国应用化学》(Angewandte Chemie International Edition)杂志上发表封面文章。该项工作首次报道了来自超嗜热菌的呼吸链复合物III天然状态和结合抑制剂后的高分辨率冷
Cell:呼吸链复合物生成机理揭开
线粒体是细胞的“动力工厂”,而其中呼吸链复合物起着重要作用,只是一直以来人们都不知道这些复合物是如何生成的。现在,德国哥廷根的科学家研究表明,新发现的蛋白复合物“MITRAC”是实现这一过程的关键。相关成果发表在12月21日的《细胞》杂志上。 众所周知,线粒体是真核细胞中由双层高度特化的单
为什么呼吸链复合物III能在极端环境下保持稳定性的结构
11月28日,中国科学院生物物理研究所孙飞课题组与德国马普研究所Hartmut Michel课题组在国际期刊《德国应用化学》(Angewandte Chemie International Edition)杂志上发表封面文章。该项工作首次报道了来自超嗜热菌的呼吸链复合物III天然状态和结合抑制剂
线粒体呼吸测定仪概述
线粒体呼吸测定仪即为传统意义上的液相氧电极,氧电极是为测定水中微量溶解氧含量而设计的一种极谱电极,除了测定线粒体呼吸还具有更为广泛的用途。早在二十世纪三十年代就有人用裸露的银-铂电极研究藻类的光合作用。自从五十年代薄膜氧电极问世以来,又大大扩展了它的应用范围。由于它具有灵敏度高、反应快、可以连续
线粒体能量/活性氧代谢的调节因子,心力衰竭治疗靶标
线粒体生物能量学的损伤,常常伴随着过度的活性氧(ROS)的产生,是包括心脏在内的对能量需求高的器官的一种基本的疾病机制。建立一个更健壮、更安全的细胞动力中心,以保护这些重要器官。 2019年7月31号,北京大学王显花研究团队等人在Cell Research上在线发表了题为NDUFAB1 con
我国研究团队解析植物中独特的双链RNA合成机制
转座子(transposon)最早由美国遗传学家Barbara McClintock在玉米中发现,在细菌、病毒以及真核生物的基因组中广泛分布。转座子类似内源性病毒,能够在宿主基因组中“复制和粘贴”自己的DNA,以达到其自我“繁殖”的目的。活跃的转座子对基因组的稳定构成严重威胁,高等生物通过对转座
你知道人类副流感病毒吗?
近段时间因为感冒到医院就诊的儿童又多起来了,引起儿童感冒的罪魁祸首之一就是人类副流感病毒(HPIVs)。人类副流感病毒(HPIVs)是常常引起儿童下呼吸道感染的一种病毒,其致病性仅次于呼吸道合胞病毒 (RSV)。与RSV一样,人类副流感病毒可以造成反复发作的上呼吸道感染(如感冒和喉咙痛)。它也能
李慧林-人类如何适应不断变化气候?来自火山口的答案
一组研究人员意外的发现,在世界上最极端的环境中有一些古老的微生物,与现代人类具有许多相关的共同点:它们的呼吸和能源节约采用的是类似的分子机制呼吸,这种机制已经适应了数十亿年来环境条件的变化。 美国文安德尔研究所,格鲁吉亚大学等处的科学家们详细介绍了参与微生物呼吸的分子复合物MBH的结构。这是M
Clark氧电极简介
Clark氧电极是为测定水中溶解氧含量而设计的一种极谱电极,早在二十世纪三十年代就有人用裸露的银-铂电极研究藻类的光合作用。自从五十年代薄膜氧电极问世以来,又大大扩展了它的应用范围。由于它具有灵敏度高、反应快、可以连续测量、记录,能够追踪反应的动态变化过程等优点,因而在叶绿体及线粒体悬浮液的光合