脂质体的粒度及zeta电位表征研究(二)

图1: 纳米颗粒跟踪分析中的细胞观测 图2:纳米颗粒跟踪分析技术能够通过捕获视频片段,同时跟踪和分析颗粒结构 在对被照射样本进行影像记录后,NTA软件将识别并跟踪视野中每一个颗粒的布朗运动。数位捕捉到的单个粒子的扩散速率(速度)与球体等效流体动力直径相关,并能通过以布朗运动为模型的斯托克斯-爱因斯坦方程计算得出。NTA可逐粒计算粒度,且由于有影像片段做分析基础,用户还可以精确表征实时状态。个体颗粒的粒度分布都能在数秒内快速获得。 NTA技术也能够对不同的脂质体进行同步的单独分析,因此除基础的粒度分析以外,还为获取额外信息提供了新的途径,其中包括单个脂质体的相对光散射强度的测定。将数据结果并与另行测得的粒度数据绘成坐标图, 可以更加细致地分辨出由不同折射率(RI)或不同材料构成的颗粒。这种方法对确定脂质体的内含物是否变异非常有用,因为空囊泡的RI值可能低于载荷的囊泡。......阅读全文

纳米粒度仪有效降低脂质体分析成本

   脂质体被用作病毒体的人工模型,能够对关键的膜结合药物目标进行系统梳理。隆德大学(瑞典)质子通道研究小组的副教授Sindra Peterson Årsköld博士及其同事的工作重点从事病毒蛋白质和抗病毒剂的脂质体研究。Peterson Årsköld博士表示,如果没有马尔文Zetasizer  

脂质体的粒度及zeta电位表征研究(一)

为成功实现药物传输,理想的途径是将治疗制剂靶向传输至所需位置,实现对受药组织与药物间相互作用的监测。可广泛运用于全身及局部给药的脂质体对这一应用的需求不断上升。由于具备液体、固体、半固体配方携载能力,脂质体已应用于针对真菌感染、甲肝、急性淋巴细胞白血病等疾病的治疗实践中。脂质体的物理表征对配方改良及

脂质体的粒度及zeta电位表征研究(二)

   图1: 纳米颗粒跟踪分析中的细胞观测 图2:纳米颗粒跟踪分析技术能够通过捕获视频片段,同时跟踪和分析颗粒结构 在对被照射样本进行影像记录后,NTA软件将识别并跟踪视野中每一个颗粒的布朗运动。数位捕捉到的单个粒子的扩散速率(速度)与球体等效流体动力直径相关,并能通过以布朗运动为模型的斯托克斯-爱

马尔文纳米粒度仪有效降低脂质体分析成本

  脂质体被用作病毒体的人工模型,能够对关键的膜结合药物目标进行系统梳理。隆德大学(瑞典)质子通道研究小组的副教授Sindra Peterson Årsköld博士及其同事的工作重点从事病毒蛋白质和抗病毒剂的脂质体研究。Peterson Årsköld博士表示,如果没有马尔文Zetasizer

BI200SM粒度仪测定脂质体粒径及分布实例

    脂质体是一种人工合成的磷脂载体。由于其特殊的结构,脂质体可以将亲水性的药物包裹在其内部的水环境中,而疏水性药物则分布在其磷脂片层中。此外,脂质体具有良好的生物相容性、生物可降解性及低毒性等优点,因此在作为药物载体方面具有潜在的应用价值。然而,脂质体在稳定性、粒径分布、规模化生产等方面存在的问

SPOS技术激光粒度仪在脂质体检测方面的应用

摘要:磷脂脂质体是由磷脂制成的球形颗粒,用于制药和化妆品工业。脂质体的大小和表面电荷是两项重要特征需要检测和监控。动态光散射(DLS)是用于测量亚微米脂质体的大小最常见的分析技术,而单颗粒光学传感(SPOS)技术用来测量大于1um的脂质体,不仅可以检测脂质体的大小还可以进行颗粒计数。美国PSS粒度仪

脂质体简介

  脂质体(liposome)是一种人工膜。在水中磷脂分子亲水头部插入水中,脂质体疏水尾部伸向空气,搅动后形成双层脂分子的球形脂质体,直径25~1000nm不等。脂质体可用于转基因,或制备的药物,利用脂质体可以和细胞膜融合的特点,将药物送入细胞内部 生物学定义:当两性分子如磷脂和鞘脂分散于水相时,分

脂质体的分类

脂质体的分类1.脂质体按照所包含类脂质双分子层的层数不同,分为单室脂质体和多室脂质体。小单室脂质体(SUV):粒径约0.02~0.08um;大单室脂质体 (LUV)为单层大泡囊,粒径在0.1~lum。多层双分子层的泡囊称为多室脂质体 (MIV),粒径在1~5um之间。2.按照结构分:单室脂质体,多室

脂质体的特点

1、靶向性和淋巴定向性:肝、脾网状内皮系统的被动靶向性。用于肝寄生虫病、利什曼病等单核-巨噬细胞系统疾病的防治。如肝利什曼原虫药锑酸葡胺脂质体,其肝中浓度比普通制剂提高了200~700倍。2、缓释作用:缓慢释放,延缓肾排泄和代谢,从而延长作用时间。3、降低药物毒性:如两性霉素B脂质体可降低心脏毒性。

什么是脂质体?

脂质体(Liposomes)是由卵磷脂和神经酰胺等制得的脂质体(空心),具有的双分子层结构与皮肤细胞膜结构相同,对皮肤有优良的保湿作用,尤其是包敷了保湿物质如透明质酸、聚葡糖苷等的脂质体是更优秀的保湿性物质。

脂质体的分类

1.脂质体按照所包含类脂质双分子层的层数不同,分为单室脂质体和多室脂质体。小单室脂质体(SUV):粒径约0.02~0.08μm;大单室脂质体 (LUV)为单层大泡囊,粒径在0.1~lμm。多层双分子层的泡囊称为多室脂质体 (MIV),粒径在1~5μm之间。2.按照结构分:单室脂质体,多室脂质体,多囊

脂质体的简介

  脂质体(liposome)是一种人工膜。在水中磷脂分子亲水头部插入水中,脂质体疏水尾部伸向空气,搅动后形成双层脂分子的球形脂质体,直径25~1000nm不等。脂质体可用于转基因,或制备的药物,利用脂质体可以和细胞膜融合的特点,将药物送入细胞内部 生物学定义:当两性分子如磷脂和鞘脂分散于水相时,分

脂质体的特点

  1、靶向性和淋巴定向性:肝、脾网状内皮系统的被动靶向性。用于肝寄生虫病、利什曼病等单核-巨噬细胞系统疾病的防治。如肝利什曼原虫药锑酸葡胺脂质体,其肝中浓度比普通制剂提高了200~700倍。  2、缓释作用:缓慢释放,延缓肾排泄和代谢,从而延长作用时间。  3、降低药物毒性:如两性霉素B脂质体可降

脂质体的分类

  1.脂质体按照所包含类脂质双分子层的层数不同,分为单室脂质体和多室脂质体。  小单室脂质体(SUV):粒径约0.02~0.08um;大单室脂质体 (LUV)为单层大泡囊,粒径在0.1~lum。  多层双分子层的泡囊称为多室脂质体 (MIV),粒径在1~5um之间。  2.按照结构分:单室脂质体,

脂质体的优势

脂质体是由脂双分子层组成的颗粒,可介导基因穿过细胞膜。通过脂质体介导比利用病毒转导进行基因转移具有以下明显的优势:①脂质体与基因的复合过程比较容易;②易于大量生产;③脂质体是非病毒性载体,与细胞膜融合将目的基因导入细胞后,脂质即被降解,无毒,无免疫原性;④DNA或RNA可得到保护,不被灭活或被核酸酶

脂质体的分类

脂质体的分类1.脂质体按照所包含类脂质双分子层的层数不同,分为单室脂质体和多室脂质体。小单室脂质体(SUV):粒径约0.02~0.08um;大单室脂质体 (LUV)为单层大泡囊,粒径在0.1~lum。多层双分子层的泡囊称为多室脂质体 (MIV),粒径在1~5um之间。2.按照结构分:单室脂质体,多室

纳米颗粒跟踪分析技术以及光散射技术在表征脂...(二)

颗粒的运动速度与由斯托克斯-爱因斯坦方程(图3)计算出来的球体等效流体力学半径相关。NTA技术能逐粒计算粒度,且因有影像片段作分析基础,用户可精确表征实时动态。 图3:斯托克斯-爱因斯坦方程 NTA技术能让研究人员在同一时间观察单个纳米颗粒,因此除基础的粒度分析以外,还能测定每个脂质体的相对光散射强

用于给药系统的脂质体表征

脂质体是一种重要的给药载体,已获批用于多种治疗配方。脂质体由磷脂质组成,具有单层或多层结构,拥有亲水内层和疏水外层,可制成不同大小的颗粒。这些颗粒可进行生物降解,基本无毒。最为重要的是,它既能封装亲水物质,又能封装疏水物质。此外,通过修饰脂质体表面,还可对特定生理部位进行靶向给药,延长脂质体在

用于给药系统的脂质体表征

    脂质体是一种重要的给药载体,已获批用于多种治疗配方。脂质体由磷脂质组成,具有单层或多层结构,拥有亲水内层和疏水外层,可制成不同大小的颗粒。这些颗粒可进行生物降解,基本无毒。最为重要的是,它既能封装亲水物质,又能封装疏水物质。此外,通过修饰脂质体表面,还可对特定生理部位进行靶向给药,延长脂质体

脂质体介导的真核细胞转染实验——脂质体进行稳定转染

实验材料哺乳动物细胞试剂、试剂盒DMEM仪器、耗材培养箱离心管实验步骤1.  接种细胞(见“脂质体介导短暂表达”步骤1)长至50%汇片。 2.  制备DNA/脂质体混合物,转染细胞(见“脂质体介导短暂表达”步骤2和3)。3.  每孔细胞加入1 ml DMEM-20完全培养液,37℃ 培养箱培养48

激光粒度仪在药物制剂研究和产业化中的应用

药物剂型是药物存在和给入机体的形式。这项技术的研究和应用在医疗卫生实践和工业实践中占据着极其重要的地位,起着推动医、药科学向前发展的作用。近年来,药物新制剂已经成为了医药产业的重要增长点,济南微纳可靠的激光粒度分析技术在药物制剂研究和生产的各个方面获得广泛应用,加速推动了国内药物制剂技术的革新和进步

微纳激光粒度仪在药物制剂研究和产业化中的应用

药物剂型是药物存在和给入机体的形式。这项技术的研究和应用在医疗卫生实践和工业实践中占据着极其重要的地位,起着推动医、药科学向前发展的作用。近年来,药物新制剂已经成为了医药产业的重要增长点,济南微纳高效可靠的激光粒度分析技术在药物制剂研究和生产的各个方面获得广泛应用,加速推动了国内药物制剂技术的革新和

微纳激光粒度仪在药物制剂研究和产业化中的应用

    药物剂型是药物存在和给入机体的形式。这项技术的研究和应用在医疗卫生实践和工业实践中占据着极其重要的地位,起着推动医、药科学向前发展的作用。近年来,药物新制剂已经成为了医药产业的重要增长点,济南微纳高效可靠的激光粒度分析技术在药物制剂研究和生产的各个方面获得广泛应用,加速推动了国内药物制剂技术

脂质体的作用特点

1、靶向性和淋巴定向性:肝、脾网状内皮系统的被动靶向性。用于肝寄生虫病、利什曼病等单核-巨噬细胞系统疾病的防治。如肝利什曼原虫药锑酸葡胺脂质体,其肝中浓度比普通制剂提高了200~700倍。2、缓释作用:缓慢释放,延缓肾排泄和代谢,从而延长作用时间。3、降低药物毒性:如两性霉素B脂质体可降低心脏毒性。

简述脂质体的分类

  1.脂质体按照所包含类脂质双分子层的层数不同,分为单室脂质体和多室脂质体。  小单室脂质体(SUV):粒径约0.02~0.08um;大单室脂质体 (LUV)为单层大泡囊,粒径在0.1~lum。  多层双分子层的泡囊称为多室脂质体 (MIV),粒径在1~5um之间。  2.按照结构分:单室脂质体,

脂质体转染的定义

脂质体是磷脂分散在水中时形成的脂质双分子层,又称为人工生物膜。

脂质体转染技术特征

阳离子脂质体表面带正电荷,能与核酸的磷酸根通过静电作用将DNA分子包裹入内,形成DNA一脂复合体,也能被表面带负电荷的细胞膜吸附,再通过膜的融合或细胞的内吞作用,偶尔也通过直接渗透作用,DNA传递进入细胞,形成包涵体或进入溶酶体 其中一小部分DNA能从包涵体内释放,并进入细胞质中,再进一步进入核内转

靶敏感脂质体定义

  靶敏感脂质体(target-sensitive liposomes, TS-liposomes)是脂质体在与靶部位结合后能自动去稳定,将内容物释放出来。对于内吞能力比较弱或没有内吞能力的靶细胞来说,普通的免疫脂质体通常不能有效地释放药物。这时,靶敏感脂质体可能更有效,释放的药物通过跨膜转运进入靶

关于脂质体的简介

  脂质体(liposome)是一种人工膜。在水中磷脂分子亲水头部插入水中,脂质体疏水尾部伸向空气,搅动后形成双层脂分子的球形脂质体,直径25~1000nm不等。脂质体可用于转基因,或制备的药物,利用脂质体可以和细胞膜融合的特点,将药物送入细胞内部 生物学定义:当两性分子如磷脂和鞘脂分散于水相时,分

关于脂质体的介绍

  脂质体(liposome)是一种人工膜。在水中磷脂分子亲水头部插入水中,脂质体疏水尾部伸向空气,搅动后形成双层脂分子的球形脂质体,直径25~1000nm不等。脂质体可用于转基因,或制备的药物,利用脂质体可以和细胞膜融合的特点,将药物送入细胞内部生物学定义:当两性分子如磷脂和鞘脂分散于水相时,分子