单个神经元O2消耗量、细胞内Ca2+浓度和线粒体膜电位的...
单个神经元O2消耗量、细胞内Ca2+浓度和线粒体膜电位的同时记录Abstract:In order to determine the sequence of cellular processes in glutamate toxicity, we simultaneously recorded O2 consumption,cytosolic Ca2+ concentration ([Ca2+]i), and mitochondrial membrane potential (mDw) in single cortical neurons. Oxygen consumption was measured using an amperometric selfreferencing platinum electrode adjacent to neurons in which [Ca2+]i and mDw were......阅读全文
单个神经元O2消耗量、细胞内Ca2+浓度和线粒体膜电位的...
单个神经元O2消耗量、细胞内Ca2+浓度和线粒体膜电位的同时记录Abstract:In order to determine the sequence of cellular processes in glutamate toxicity, we simultaneously recorded O2
线粒体膜电位荧光探针Cell-Meter-线粒体膜电位(MMP)
人体的ATP有95%为线粒体所提供,合成的ATP通过线粒体内膜ADP/ATP载体与细胞质中的ADP交换进入细胞质,参与细胞的各种需能过程,因此线粒体与细胞维持正常功能密切相关。线粒体在呼吸氧化过程中,将所产生的能量以电化学势能储存于线粒体内膜,在内膜两侧造成质子及其他离子浓度的不对称分布而形成线粒体
线粒体膜电位变化的检测
在凋亡研究的早期,从形态学观测上线粒体没有明显的变化。随着凋亡机制研究的深入,发现线粒体凋亡也是细胞凋亡的重要组成部分,发生很多生理生化变化。例如,在受到凋亡诱导后线粒体转膜电位会发生变化,导致膜穿透性的改变。MitoSensorTM,一个阳离子性的染色剂,对此改变非常敏感,呈现出不同的荧光染色。正
关于线粒体膜电位变化的检测
在凋亡研究的早期,从形态学观测上线粒体没有明显的变化。随着凋亡机制研究的深入,发现线粒体凋亡也是细胞凋亡的重要组成部分,发生很多生理生化变化。例如,在受到凋亡诱导后线粒体转膜电位会发生变化,导致膜穿透性的改变。MitoSensorTM,一个阳离子性的染色剂,对此改变非常敏感,呈现出不同的荧光染色
激光扫描共焦显微镜技术及应用(二)
五、激光扫描共焦显微镜技术的应用定位、定量三维重组动态测量¨ 活细胞或组织内游离Ca2+浓度的测量¨ 活细胞内H+浓度( pH值)的测量¨ 自由基的检测¨ 药物进入细胞的动态过程、定位分布及定量 应用:细胞膜电位的测量 荧光漂白恢复(FRAP)的测量 笼锁解笼锁的测量
线粒体损伤与检测方法研究进展
作者:左钱飞,张海献,鲁鹏飞 摘 要:线粒体是细胞活动的“能源工厂”,在各种致病因素作用下线粒体极易出现各种结构和功能损伤,这在疾病的发展中起着十分重要的影响,文章就线粒体结构和功能损伤及其检测方法作一综述。 关键词:线粒体损伤;mtDNA;凋亡 Abstract:Mitochondria
利用自动细胞成像系统评价线粒体完整性和膜电位变化
简介线粒体功能作为细胞健康度评价的关键指标,可以通过检测其膜电位变化情况获得相应数据。线粒体膜电位去极化作为低氧损伤或氧化应激反应的早期重要的一种信号,阳离子荧光染料是用于线粒体膜电位评估的有效工具。我们利用两种已知的氧化磷酸化抑制剂作为化合物进行短时间 ( 60分钟 ) 的处理。抗霉素A (A
凋亡途径总体来说包括哪些
细胞凋亡的途径细胞凋亡是机体维持自身稳定的一种基本生理机制,是有许多基因产物及细胞因子参与的一种有序的细胞自我消亡形式。通过细胞凋亡,机体可消除损伤、衰老与突变的细胞来维持自身的稳态平衡和各种器官及系统的正常功能。由于细胞凋亡是一种复杂的生理及病理现象,所以在其发生的3个阶段中涉及不同的信号转导途径
简述锥体细胞的特性
KATP通道在细胞的新陈代谢与膜兴奋性的耦联中起重要作用,采用膜片钳的内面向外式记录方法,在成年大鼠海马CA1区锥体细胞上记录到一种被胞浆侧ATP和甲糖宁(tolbutamide,一种KATP通道阻断剂)抑制的Ca2+依赖性钾离子通道,在细胞膜内外的K+浓度均为140 mmol/L时,通道的电导
JC1分析线粒体膜电位的方法
Analysis of Mitochondrial Membrane Potentialwith the Sensitive Fluorescent Probe JC-1 Andrea Cossarizza and Stefano Salvioli Department of Biomedical
膜电位的概念和起源
膜电位(Membrane Potential)通常是指以膜相隔的两溶液之间产生的电位差。一般是指细胞生命活动过程中伴随的电现象,存在于细胞膜两侧的电位差。膜电位在神经细胞通讯的过程中起着重要的作用。1791年意大利解剖学家加伐尼(L.Galvani)偶然发现,如果将蛙腿的肌肉置于铁板上再用铜钩钩住蛙
膜电位的定义和作用
膜电位(Membrane Potential)通常是指以膜相隔的两溶液之间产生的电位差。一般是指细胞生命活动过程中伴随的电现象,存在于细胞膜两侧的电位差。膜电位在神经细胞通讯的过程中起着重要的作用。1791年意大利解剖学家加伐尼(L.Galvani)偶然发现,如果将蛙腿的肌肉置于铁板上再用铜钩钩住蛙
线粒体跨膜电位的耗散与细胞凋亡的密切关系
有陆续报道说明线粒体跨膜电位的耗散早于核酸酶的激活,也早于磷酯酰丝氨酸暴露于细胞表面。而一旦线粒体跨膜电位耗散,细胞就会进入不可逆的凋亡过程。线粒体解联的呼吸链会产生大量活性氧,氧化线粒体内膜上的心磷脂。实验证明,用解偶联剂mClCCP会导致淋巴细胞凋亡。而如果能稳定线粒体跨膜电位就能防止细胞凋
关于细胞凋亡的早期检测—-线粒体膜电位变化的检测介绍
线粒体膜电位变化的检测:在凋亡研究的早期,从形态学观测上线粒体没有明显的变化。随着凋亡机制研究的深入,发现线粒体凋亡也是细胞凋亡的重要组成部分,发生很多生理生化变化。例如,在受到凋亡诱导后线粒体转膜电位会发生变化,导致膜穿透性的改变。MitoSensorTM,一个阳离子性的染色剂,对此改变非常敏
线粒体跨膜电位的耗散与细胞凋亡的密切关系
有陆续报道说明线粒体跨膜电位的耗散早于核酸酶的激活,也早于磷酯酰丝氨酸暴露于细胞表面。而一旦线粒体跨膜电位耗散,细胞就会进入不可逆的凋亡过程。线粒体解联的呼吸链会产生大量活性氧,氧化线粒体内膜上的心磷脂。实验证明,用解偶联剂mClCCP会导致淋巴细胞凋亡。而如果能稳定线粒体跨膜电位就能防止细胞凋亡。
生物膜离子通道的功能特征
离子通道依据其活化的方式不同,可分两类:一类是电压活化的通道,即通道的开放受膜电位的控制,如Na+、Ca2+、Cl-和一些类型的K+通道;另一类是化学物活化的通道,即靠化学物与膜上受体相互作用而活化的通道,如 Ach受体通道、氨基酸受体通道、Ca2+活化的K+通道等。钠通道各种生物材料中,与电兴奋相
生物膜离子通道的功能特征
离子通道依据其活化的方式不同,可分两类:一类是电压活化的通道,即通道的开放受膜电位的控制,如Na+、Ca2+、Cl-和一些类型的K+通道;另一类是化学物活化的通道,即靠化学物与膜上受体相互作用而活化的通道,如 Ach受体通道、氨基酸受体通道、Ca2+活化的K+通道等。 钠通道 各种生物材料中
生物膜离子通道的功能特征
离子通道依据其活化的方式不同,可分两类:一类是电压活化的通道,即通道的开放受膜电位的控制,如Na+、Ca2+、Cl-和一些类型的K+通道;另一类是化学物活化的通道,即靠化学物与膜上受体相互作用而活化的通道,如 Ach受体通道、氨基酸受体通道、Ca2+活化的K+通道等。钠通道各种生物材料中,与电兴奋相
JC1分析线粒体膜电位的方法3
3.6 Key references1. Kroemer G., Zamzani N., Susin S.A. Mitochondrial control of apoptosis. Immunol. Today, 18: 44-51, 1997.2. Susin S.A., Zamzami N.,
JC1分析线粒体膜电位的方法2
3. COMMENTARY3.1 Background information The technique of JC-1 staining has been developed with the intent to detect DY in intact, viable cells. For th
线粒体跨膜电位的耗散与细胞凋亡的密切关系介绍
有陆续报道说明线粒体跨膜电位的耗散早于核酸酶的激活,也早于磷酯酰丝氨酸暴露于细胞表面。而一旦线粒体跨膜电位耗散,细胞就会进入不可逆的凋亡过程。线粒体解联的呼吸链会产生大量活性氧,氧化线粒体内膜上的心磷脂。实验证明,用解偶联剂mClCCP会导致淋巴细胞凋亡。而如果能稳定线粒体跨膜电位就能防止细胞凋
一种快速简便的进行线粒体膜电位检测的方法
背景简介: 线粒体是细胞新陈代谢的主要细胞器,起着“能量工厂”的作用。线粒体内部通过一系列的氧化反应去氧化丙酮酸和NADH,以产生储存能量的ATP分子。而这一系列反应的驱动力是线粒体膜上电化学质子的梯度差,也叫做膜电位。由于这种质子的梯度差为磷酸化和氧化反应提供了“驱动力”,因此它也被当作一个
膜片钳的相关应用举例
1、与药物作用有关的心肌离子通道 心肌细胞通过各种离子通道对膜电位和动作电位稳态的维持而保持正常的功能。国外学者在人类心肌细胞离子通道特性的研究中取得了许多进展,使得心肌药理学实验由动物细胞模型向人心肌细胞成为可能。 2、对离子通道生理与病理情况下作用机制的研究 通过对各种生理或病理情况下
膜电位与动作电位
静息时,神经元细胞膜使细胞内的电位,比细胞外的电位“负”(内负外正的细胞膜电位常为-58 mV),去极化时细胞膜电位常超过0mV,然后很快恢复;有时细胞膜内电位能比细胞膜外电位低60 mV以上(超极化)。静息电位时,神经元可通过钠—钾- ATP酶等,把细胞外低水平的钾离子逆向摄人、浓集在细胞内,把钠
膜电位与动作电位的相对概念
静息时,神经元细胞膜使细胞内的电位,比细胞外的电位“负”(内负外正的细胞膜电位常为-58 mV),去极化时细胞膜电位常超过0mV,然后很快恢复;有时细胞膜内电位能比细胞膜外电位低60 mV以上(超极化)。静息电位时,神经元可通过钠—钾- ATP酶等,把细胞外低水平的钾离子逆向摄人、浓集在细胞内,把钠
细胞内钙稳态调节的相关介绍
细胞内钙稳态调节 正常情况下,细胞内钙浓度为10-8-10-7mol/L,细胞外钙浓度为10-3-10-2mol/L。约44%细胞内钙存在于胞内钙库(线粒体和内质网),细胞内游离钙仅为细胞内钙的0.005%。上述电化学梯度的维持,取决于生物膜对钙的不自由通透性和转运系统的调节。 (1)Ca2+
心室肌细胞跨膜电位及其产生机理
一、静息电位:心室肌细胞在静息时,细胞膜处于外正内负的极化状态,其主要由K+外流形成。 二、动作电位:心室肌动作电位的全过程包括除极过程的0期和复极过程的1、2、3、4等四个时期。 0期:心室肌细胞兴奋时,膜内电位由静息状态时的-90mV上升到+30mV左右,构成了动作电位的上升支,称为除极
动物所等发现舞蹈病神经元线粒体DNA氧化损伤的机制
亨廷顿氏舞蹈病是一种常染色体显性遗传的神经退行性疾病,主要表现为运动障碍、认知和精神紊乱,一般在发病后10-15年内死亡。该疾病的病理特征是大脑纹状体神经元的渐进性丢失,但亨廷顿基因突变导致纹状体神经元选择性死亡的机制还不清楚,目前也没有任何治疗手段。前人一系列研究发现,与大脑其他区域
神经元线粒体应激的记忆可以跨代遗传的现象和机制
遗传与环境共同作用,决定个体的发育、生殖、衰老和行为等,在受到环境压力胁迫时,生物体会产生适应性的应激反应。长久以来,生物学家一直非常关注的科学问题是,生物体所产生的这些应激反应是否可以直接传递给后代,在后代还未直接经历上一辈的环境胁迫时,就获得某些性状,使他们能够更好的应对预期的环境变化和压力
神经所王以政最新PNAS解析关键通道
来自中科院上海生科院神经所,美国NIH等处的研究人员发表了题为“Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake”的文章,发现瞬时受体电势C(TRPC)通道蛋白参