膜电位与动作电位

静息时,神经元细胞膜使细胞内的电位,比细胞外的电位“负”(内负外正的细胞膜电位常为-58 mV),去极化时细胞膜电位常超过0mV,然后很快恢复;有时细胞膜内电位能比细胞膜外电位低60 mV以上(超极化)。静息电位时,神经元可通过钠—钾- ATP酶等,把细胞外低水平的钾离子逆向摄人、浓集在细胞内,把钠离子、钙离子、氯离子排出细胞,神经元静息时的细胞膜电位,是钾离子、钠离子、钙离子、氯离子在细胞膜内外平衡的结果,可根据公式计算出细胞内比细胞外电位低58 mV( -58 mV)。在细胞静息膜电位为正于-58 mV时,可引发细胞膜钠离子通道开放、钠离子快速内流、细胞膜去极化、神经细胞兴奋。在细胞膜静息电位为负于-58 mV时,可引发细胞膜钾离子通道开放、钾离子持久外排、细胞膜超极化、神经细胞被抑制。神经元引发动作电位的阈值为-44~-55 mV。钠离子快速内流期常为绝对不应期,能防止再发生动作电位。动作电位时,常仅有微量钾离子、钠离子流......阅读全文

膜电位与动作电位

静息时,神经元细胞膜使细胞内的电位,比细胞外的电位“负”(内负外正的细胞膜电位常为-58 mV),去极化时细胞膜电位常超过0mV,然后很快恢复;有时细胞膜内电位能比细胞膜外电位低60 mV以上(超极化)。静息电位时,神经元可通过钠—钾- ATP酶等,把细胞外低水平的钾离子逆向摄人、浓集在细胞内,把钠

膜电位与动作电位的相对概念

静息时,神经元细胞膜使细胞内的电位,比细胞外的电位“负”(内负外正的细胞膜电位常为-58 mV),去极化时细胞膜电位常超过0mV,然后很快恢复;有时细胞膜内电位能比细胞膜外电位低60 mV以上(超极化)。静息电位时,神经元可通过钠—钾- ATP酶等,把细胞外低水平的钾离子逆向摄人、浓集在细胞内,把钠

膜电位的研究与发现

1791年意大利解剖学家加伐尼(L.Galvani)偶然发现,如果将蛙腿的肌肉置于铁板上再用铜钩钩住蛙的脊髓,当铜钩与铁板接触时肌肉就会发生收缩,他把这种现象归因于动物电。1902年德国生理学家伯恩斯坦(Julius Bernstein)接受了德国化学家奥斯特瓦尔德(W.Ostwald)的膜通透性理

膜电位的发现与研究

1791年意大利解剖学家加伐尼(L.Galvani)偶然发现,如果将蛙腿的肌肉置于铁板上再用铜钩钩住蛙的脊髓,当铜钩与铁板接触时肌肉就会发生收缩,他把这种现象归因于动物电。1902年德国生理学家伯恩斯坦(Julius Bernstein)接受了德国化学家奥斯特瓦尔德(W.Ostwald)的膜通透性理

肌电图的原理

  肌纤维(细胞)与神经细胞一样,具有很高的兴奋性,属于可兴奋细胞。它们在兴奋时最先出现的反应就是动作电位,即发生兴奋处的细胞膜两侧出现的可传导性电位。肌肉的收缩活动就是细胞兴奋的动作电位沿着细胞膜传导向细胞深部(通过兴奋一收缩机制)进一步引起的。  肌纤维安静时只有静息电位,即在未受刺激时细胞膜内

线粒体膜电位荧光探针Cell-Meter-线粒体膜电位(MMP)

人体的ATP有95%为线粒体所提供,合成的ATP通过线粒体内膜ADP/ATP载体与细胞质中的ADP交换进入细胞质,参与细胞的各种需能过程,因此线粒体与细胞维持正常功能密切相关。线粒体在呼吸氧化过程中,将所产生的能量以电化学势能储存于线粒体内膜,在内膜两侧造成质子及其他离子浓度的不对称分布而形成线粒体

动作电位是怎么发生的

1.细胞膜两侧存在离子浓度差,细胞膜内钾离子浓度高于细胞膜外,而细胞外钠离子(其他其实可忽略)高于细胞内,这种浓度差的维持依靠离子泵的主动转运.(主要是钠-钾泵的转运).2.细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许钾离子通透,而去极化到阈电位水平时又主要允许钠离子通透.3.当细

膜电位的定义

中文名称:膜电位英文名称:Membrane Potential定义1:由于膜两侧接触不同浓度电解质溶液而产生的电位差。应用学科:海洋科技(一级学科)、海洋技术(二级学科)、海水资源开发技术(三级学科)定义2:跨越活细胞膜的电位差。动物与植物的质膜均维持一定电位,细胞内部的负电性常大于其外部。动物细胞

膜电位的定义

中文名称:膜电位英文名称:Membrane Potential定义1:由于膜两侧接触不同浓度电解质溶液而产生的电位差。应用学科:海洋科技(一级学科)、海洋技术(二级学科)、海水资源开发技术(三级学科)定义2:跨越活细胞膜的电位差。动物与植物的质膜均维持一定电位,细胞内部的负电性常大于其外部。动物细胞

关于细胞膜电位的基本信息介绍

  1.静息电位 指心肌细胞处于静息状态呈现的膜内为负、膜外为正的电位状态,又称为极化状态,其形是由于钠通道关闭,钾通道开放,胞内高钾,静息时主要对K+有通透性的结果。  2.动作电位 当心肌细胞受刺激而兴奋时,发生除极和复极,膜电位升高,到达阈电位后,便产生动作电位。以心室肌细胞为例,整个动作电位

神经所发现大脑皮层维持其兴奋和抑制平衡的新策略

  3月22日,《公共科学图书馆•生物学》(PLoS Biology)发表了中科院上海生命科学研究院神经所舒友生研究组的最新成果:大脑皮层维持兴奋和抑制动态平衡的新机制,即神经元的膜电位水平可以调控反馈抑制的强度。该工作由朱洁、江漫、杨明坡和侯晗等合作完成。同期的PLoS Biolo

概述老年人室性期前收缩的发病机制

  1.折返机制 折返是指冲动在激动某一节段心肌组织后返回,再一次激动该节段组织。折返的形成必须具有折返环、传导途径的一部分存在单向阻滞、另一部分传导速度缓慢3个条件。与折返有关的室性期前收缩通常比较稳定,联律间期固定。室性心律失常多由折返机制所致,分为大折返及微折返。缺血心肌组织引起的折返属于大折

概述老年人室性心动过速的发病机制

  1.折返机制 折返是指冲动在激动某一节段心肌组织后返回,再一次激动该节段组织。折返的形成必须具有折返环、传导途径的一部分存在单向阻滞、另一部分传导速度缓慢3个条件。与折返有关的室性期前收缩通常比较稳定,联律间期固定。室性心律失常多由折返机制所致,分为大折返及微折返。缺血心肌组织引起的折返属于大折

膜电位的产生原因

一些关键离子在细胞内外的不均等分布及选择性的透膜移动,是形成膜电位的基础。每种离子的跨膜渗透都是相对独立的,这种现象又叫做离子运动的独立性法则。产生膜电位的重要离子主要有Na+,K+和A-(带负电荷的细胞内的大蛋白质分子,仅存在细胞内,且膜对它无通透性)。其他离子,如Ca2+、Cl-、Mg2+等在大

窦房结P细胞跨膜电位及产生机理

  1.P细胞动作电位的主要特征4期膜电位不稳定,可发生自动除极,这是自律细胞动作电位最显著的特点。  此外:  1)除极0期的锋值较小,除极速度较慢,约为10V/s,0期除极只到0mV左右。  2)复极由3期完成,基本没有1期和2期。  3)复极3期完毕后进入4期,这时可达到的最大膜电位值,称为最

心室肌细胞跨膜电位及其产生机理

  一、静息电位:心室肌细胞在静息时,细胞膜处于外正内负的极化状态,其主要由K+外流形成。  二、动作电位:心室肌动作电位的全过程包括除极过程的0期和复极过程的1、2、3、4等四个时期。  0期:心室肌细胞兴奋时,膜内电位由静息状态时的-90mV上升到+30mV左右,构成了动作电位的上升支,称为除极

阵发性室性心动过速的发病机制

   与成人相同,小儿室性心律失常的电生理机制与所有其他心律失常相同,即自律性异常、触发激动与折返机制。以现在(2008年)的认识程度还不可能确定某一室性心律失常的发病机制,也不能由心电图推测出来。尽管如此,认识这些可能的机制有助于了解室速的病因、诊断和治疗。   1.自律性异常 一些具有正常自律性

什么叫细胞膜的通透性

细胞膜通透性改变是指细胞膜的选择透过性发生了改变,膜上运输离子的载体蛋白、通道蛋白等失去作用,或者由原来的关闭状态变为开放状态等等细胞受到刺激通透性发生改变,最直接的例子就是生物体内兴奋神经纤维上的传导和动作电位产生的原理~比如说动作电位【已经为你用离子做了例子了~】在静息电位的基础上,细胞受到一个

钾ATP酶的生物现象

静息电位产生静息电位指安静时存在于细胞两侧的外正内负的电位差。其形成原因是膜两侧离子分布不平衡及膜对K+有较高的通透能力。细胞内K+浓度和带负电的蛋白质浓度都大于细胞外(而细胞外Na+和Cl-浓度大于细胞内),但因为细胞膜只对K+有相对较高的通透性,K+顺浓度差由细胞内移到细胞外,而膜内带负电的蛋白

钠钾ATP酶的生物现象

静息电位产生静息电位指安静时存在于细胞两侧的外正内负的电位差。其形成原因是膜两侧离子分布不平衡及膜对K+有较高的通透能力。细胞内K+浓度和带负电的蛋白质浓度都大于细胞外(而细胞外Na+和Cl-浓度大于细胞内),但因为细胞膜只对K+有相对较高的通透性,K+顺浓度差由细胞内移到细胞外,而膜内带负电的蛋白

钠钾ATP酶动作电位产生的相关介绍

  能使Na+通道大量开放从而产生动作电位的临界膜电位。(或能使膜出现Na+内流与去极化形成负反馈的膜电位值)称为阈电位。在一定的刺激持续时间作用下,引起组织兴奋所必需的最小刺激强度,称为阈强度。比阈电位弱的刺激,成为阈下刺激,他们只能引起低于阈电位值的去极化,不能发展为动作电位。阈下刺激未能使静息

肌电图的原理及组成

  原理  肌纤维(细胞)与神经细胞一样,具有很高的兴奋性,属于可兴奋细胞。它们在兴奋时最先出现的反应就是动作电位,即发生兴奋处的细胞膜两侧出现的可传导性电位。肌肉的收缩活动就是细胞兴奋的动作电位沿着细胞膜传导向细胞深部(通过兴奋一收缩机制)进一步引起的。  肌纤维安静时只有静息电位,即在未受刺激时

一例高钾血症心电图分析

          2017-04-11                                     医脉通                                                                

阵发性室性心动过速的病因及发病机制

  病因   患儿有器质性心脏病,多见于严重心肌疾病如心肌炎,扩张型心肌病,致心律失常性右室发育不良,肥厚型心肌病,心肌浦肯野细胞瘤是婴儿室性心动过速的常见病因。心室切开术后,特别是年长儿法洛四联症根治术后晚期,可发生室速,甚至猝死。PVT偶见于完全性房室阻滞、冠状动脉起源异常及川崎病并发心肌梗死患

阵发性室性心动过速的发病机制及临床表现

  发病机制   与成人相同,小儿室性心律失常的电生理机制与所有其他心律失常相同,即自律性异常、触发激动与折返机制。以现在(2008年)的认识程度还不可能确定某一室性心律失常的发病机制,也不能由心电图推测出来。尽管如此,认识这些可能的机制有助于了解室速的病因、诊断和治疗。   1.自律性异常 一些具

线粒体膜电位变化的检测

在凋亡研究的早期,从形态学观测上线粒体没有明显的变化。随着凋亡机制研究的深入,发现线粒体凋亡也是细胞凋亡的重要组成部分,发生很多生理生化变化。例如,在受到凋亡诱导后线粒体转膜电位会发生变化,导致膜穿透性的改变。MitoSensorTM,一个阳离子性的染色剂,对此改变非常敏感,呈现出不同的荧光染色。正

膜电位的概念和起源

膜电位(Membrane Potential)通常是指以膜相隔的两溶液之间产生的电位差。一般是指细胞生命活动过程中伴随的电现象,存在于细胞膜两侧的电位差。膜电位在神经细胞通讯的过程中起着重要的作用。1791年意大利解剖学家加伐尼(L.Galvani)偶然发现,如果将蛙腿的肌肉置于铁板上再用铜钩钩住蛙

膜电位是如何产生的?

一些关键离子在细胞内外的不均等分布及选择性的透膜移动,是形成膜电位的基础。每种离子的跨膜渗透都是相对独立的,这种现象又叫做离子运动的独立性法则。产生膜电位的重要离子主要有Na+,K+和A-(带负电荷的细胞内的大蛋白质分子,仅存在细胞内,且膜对它无通透性)。其他离子,如Ca2+、Cl-、Mg2+等在大

膜电位是如何产生的?

一些关键离子在细胞内外的不均等分布及选择性的透膜移动,是形成膜电位的基础。每种离子的跨膜渗透都是相对独立的,这种现象又叫做离子运动的独立性法则。产生膜电位的重要离子主要有Na+,K+和A-(带负电荷的细胞内的大蛋白质分子,仅存在细胞内,且膜对它无通透性)。其他离子,如Ca2+、Cl-、Mg2+等在大

膜电位的定义和作用

膜电位(Membrane Potential)通常是指以膜相隔的两溶液之间产生的电位差。一般是指细胞生命活动过程中伴随的电现象,存在于细胞膜两侧的电位差。膜电位在神经细胞通讯的过程中起着重要的作用。1791年意大利解剖学家加伐尼(L.Galvani)偶然发现,如果将蛙腿的肌肉置于铁板上再用铜钩钩住蛙