基因的重组连接技术

DNA酶切片段的连接是分子生物学实验中又一关键技术,该技术是基因重组,基因改造的重要中间环节。两DNA片段相邻的5'磷酸和3'羟基间可由连接酶催化形成磷酸二酯键,这个连接反应在体外一般都有大肠杆菌DNA联接酶和T4DNA联接酶催化,但分子生物学实验中主要采用T4DNA联接酶,因该酶在正常条件下,即能完成连接反应。在分子生物学实验中连接酶主要用于1)基因重组中载体与外源基因的连接;2) 接头与DNA片断的连接,这种连接一般发生在文库构建、分子标记的AFLP及差异表达的研究等中。连接反应可在溶液中进行也可在琼脂块中进行。本课程中在AFLP、文库构建、PCR片断的克隆等中均有连接的内容,在本部分仅以重组克隆为目的介绍相应的连接类型。在基因重组克隆中外源DNA与载体的连接是承上启下的一步操作,根据连接片断末端类型不同,连接方式有粘端连接、平端连接等和平粘端连接及单碱基配对的T-载体连接。其中粘端连接的效率最高,粘......阅读全文

基因的重组连接技术

DNA酶切片段的连接是分子生物学实验中又一关键技术,该技术是基因重组,基因改造的重要中间环节。两DNA片段相邻的5'磷酸和3'羟基间可由连接酶催化形成磷酸二酯键,这个连接反应在体外一般都有大肠杆菌DNA联接酶和T4DNA联接酶催化,但分子生物学实验中主要采用T4DNA联接酶,因该酶在

DNA重组技术-连接

实验概要        体外连接获得重组分子,用于转化受体细胞。实验原理    质粒具有稳定可靠和操作简便的优点。如果要克隆较小的DNA片段(<10kb)且结构简单,质粒要比其它任何载体都要好。在质粒载体上进行克隆,从原理上说是很简单的,先用限制性内切酶切割质粒DNA和目的DNA片段,  然后体外使

DNA的重组连接

目的:了解T4DNA连接酶的几种生物学功能及用途;学习在T4DNA连接酶的作用下,载体与目的基因的几种不同的连接方式以及在标准的连接反应体系中,质粒载体和插入的外源DNA的比率关系和各自的用量;掌握用Pmd18-Tvector与PCR产物进行T-A克隆的机理及其应用。原理:外源DNA片段和线状质粒载

DNA重组技术:酶切、连接

实验原理: DNA重组技术是用内切酶分别将载体和外源DNA切开,经分离纯化后,用链接酶将其连接,构成新的DNA分子。限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA序列之内或其附近的特异位点上,并切割双链DNA。如EcoRⅠ切割识别序列后产生两个互补的粘性末端。   5’…G↓A

重组质粒(dna-recombinant-plasmid)的连接

质粒具有稳定可靠和操作简便的优点。如果要克隆较小的DNA 片段( <10kb) 且结构简单,质粒要比其它任何载体都要好。在质粒载体上进行克隆,从原理上说是很简单的,先用限制性内切酶切割质粒DNA 和目的DNA 片段,然后体外使两者相连接,再用所得到重组质粒转化细菌,即可完成。但在实际工作中,

重组质粒的连接、转化及筛选

第一节 概 述质粒具有稳定可靠和操作简便的优点。如果要克隆 较小的DNA 片段(<10kb)且结构简单,质粒要比其它任何载体都要好。在质粒载体上进行克隆 ,从原理上说是很简单的,先用限制性内切酶切割质粒DNA 和目的DNA 片段, 然后体外使两者相连接, 再用所得到重组质粒转化细菌,即可完成。但在实

重组质粒的连接、转化及筛选

重组质粒的连接、转化及筛选主要用于获得含有目的基因连接的重组子。实验方法原理用特定的限制性内切酶切割载体DNA和外源DNA片段并进行纯化,于体外使两者相连接(若用T-载体,可直接用纯化的PCR产物进行连接),转化宿主细菌后,利用蓝白斑筛选原理对重组子进行挑选。由于载体上带有Amp'和lacZ

重组质粒的连接、转化及筛选

重组质粒的连接、转化及筛选主要用于获得含有目的基因连接的重组子。实验方法原理用特定的限制性内切酶切割载体DNA和外源DNA片段并进行纯化,于体外使两者相连接(若用T-载体,可直接用纯化的PCR产物进行连接),转化宿主细菌后,利用蓝白斑筛选原理对重组子进行挑选。由于载体上带有Amp'和lacZ

重组质粒的连接、转化及筛选

实验材料 外源DNA 片段试剂、试剂盒 连接反应缓冲液T4 DNA 连接酶X-gal储液IPTG储液麦康凯选择性培养基仪器、耗材 恒温摇床台式高速离心机恒温水浴锅电泳装置电热恒温培养箱电泳仪移液枪eppendorf管

重组质粒的连接、转化及筛选

实验概要本技术以pBS质粒、E. coli DH5α为例介绍了重组质粒的连接、转化及筛选。实验原理本实验所使用的载体质粒DNA为pBS,转化受体菌为E.coli DH5α菌株。由于pBS上带有Ampr 和lacZ基因,故重组子的筛选采用Amp抗性筛选与α-互补现象筛选相结合的方法。因pBS带有Amp

重组质粒的连接、转化及筛选

材料、设备及试剂  一、 材料  外源DNA片段: 自行制备的带限制性末端的DNA溶液,浓度已知; 载体DNA: T-vector(Ampr ,lacZ),自行提取纯化,浓度已知; 宿主菌: E. coli DH5α,或JM系列等具有α-互补能力的菌株。  二、 设备  恒温摇床,台式高速离心机,恒

重组质粒的连接、转化及筛选

第一节 概 述质粒具有稳定可靠和操作简便的优点。如果要克隆 较小的DNA 片段(<10kb)且结构简单,质粒要比其它任何载体都要好。在质粒载体上进行克隆 ,从原理上说是很简单的,先用限制性内切酶切割质粒DNA 和目的DNA 片段, 然后体外使两者相连接, 再用所得到重组质粒转化细菌,即可

DNA的重组连接实验原理和步骤

一、实验目的 用T4DNA连接酶将载体pBR322 EcoR Ⅰ-CIP处理的DNA片段,与目的基因5.4KbEcoR Ⅰ片段连接起来,构建体外重组DNA分子,同时学习几种DNA连接的方法。 二、实验原理 重组的DNA分子是在T4DNA连接酶的作用下,有Mg

基因重组和DNA重组区别

基因重组是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程。 在人类的生殖细胞中发现的46条染色体发生在生物体内基因的交换或重新组合。基因重组是生物遗传变异的一种机制,包括同源重组、位点特异重组、转座作用和异常重组四大类。DNA重组指DNA分子内或分子间发生的遗传

关于基因重组的自然重组的介绍

  自然界不同物种或个体之间的基因转移和重组是经常发生的,它是基因变异和物种进化的基础。自然界的基因转移的方式有:  接合作用:当细胞与细胞、或细菌通过菌毛相互接触时,质粒DNA就可从一个细胞(细菌)转移至另一细胞(细菌),这种类型的DNA转移称为接合作用(conjugation )。  转化作用(

基因重组的定义

重组(recombination) 杂交后代的个体中出现了亲代所没有的基因组合的现象。

基因重组的分类

①基因的自由组合:减数分裂(减1后期)形成配子时,随着非同源染色体的自由组合,位于这些染色体上的非等位基因也自由组合。组合的结果可能产生与亲代基因型不同的个体。②基因的交叉互换:减Ⅰ四分体时期,同源染色体上(非姐妹染色单体)之间等位基因的交换。结果是导致染色单体上基因的重组,组合的结果可能产生与亲代

基因重组的简述

  基因重组是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程。1974年波兰斯吉巴尔斯基(Waclaw Szybalski)称基因重组为合成生物学,1978年他在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。

什么是基因重组

基因重组是造成基因型变化的核酸的交换过程,是生物体内细胞中DNA序列的改变。基因重组是在生物体进行有性生殖的过程中,控制不同性状的基因重新组合。基因重组一般发生在减数分裂过程中,包含两种情况,一种是减一后期同源染色体上的等位基因彼此分离,非同源染色体上的非等位基因彼此结合;另一种情况是联会时期的交叉

基因重组的应用——基因诊断

通过使用基因芯片分析人类基因组,可找出致病的遗传基因。癌症、糖尿病等,都是遗传基因缺陷引起的疾病。医学和生物学研究人员将能在数秒钟内鉴定出Z终会导致癌症等的突变基因。借助一小滴测试液,医生们能预测药物对病人的功效,可诊断出药物在ZL过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物

基因重组应用——转基因技术

基因重组中转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段的来源可以是提取特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的DNA片段。基因重组DNA片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技

重组质粒(dna-recombinant-plasmid)的连接、转化及筛选1

第一节 概 述质粒具有稳定可靠和操作简便的优点。如果要克隆 较小的DNA 片段(<10kb)且结构简单,质粒要比其它任何载体都要好。在质粒载体上进行克隆 ,从原理上说是很简单的,先用限制性内切酶切割质粒DNA 和目的DNA 片段, 然后体外使两者相连接, 再用所得到重组质粒转化细菌,即可完成

重组质粒(dna-recombinant-plasmid)的连接、转化及筛选2

第二节 材料、设备及试剂一、 材料外源DNA 片段: 自行制备的带限制性末端的DNA 溶液,浓度已知; 载体DNA : pBS质粒(Ampr ,lacZ),自行提取纯化,浓度已知; 宿主菌: E. coli DH5α,或JM系列等具有α-互补能力的菌株。二、 设备恒温摇床,台式高速离心机,恒温水浴锅

基因重组和基因突变区别

1、基因突变是基因的从无到有,突变产生新基因。基因重组是原有基因的重新组合,产生的是新基因型。2、发生的时间:基因重组发生的时期是:减数分裂中四分体时期同源染色体的非姐妹染色单体之间的局部交换和减数diyi次分裂后期非同源染色体的而重新组合;基因突变发生的时间是在有丝分裂和减数分裂的间期。

基因重组和基因重排的区别

基因重排:通过基因的转座,DNA的断裂错接而使正常基因顺序发生改变。基因重排是一个基因内DNA排列发生改变,而使这个基因改变了,如出现新的基因就是靠这种方法基因重组: 是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程。基因重组却是几个不同基因互相改变位置,而使的

基因重排与基因重组的区别

基因重排:通过基因的转座,DNA的断裂错接而使正常基因顺序发生改变基因重组: 是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程。也就是说,,基因重排是一个基因内DNA排列发生改变,,而使这个基因改变了,如出现新的基因就是靠这种方法,而基因重组却是几个不同基因互相

基因重组的相关介绍

  基因重组指在生物体进行有性生殖的过程中,控制不同性状的基因重新组合。  其发生在二倍体生物的每一个世代中。每条染色体的两份拷贝在有些位置可能具有不同的等位基因,通过互换染色体间相应的部分,可产生于亲本不同的重组染色体。重组来源于染色体物质的物理交换,减数分裂前期,每条染色体有4份拷贝,所有的4份

细胞重组-无需插入基因

无需插入基因也可实现人体细胞重组    美新发现为细胞重组研究开辟了全新思路   美国研究人员发现了一种打开人体成纤维细胞(皮肤细胞)中的干细胞基因的新方法,从而避免了插入额外基因或利用病毒所带来的健康风险。这一成果开辟了细胞重组的新途径,未来通过诱使患者自身细胞修复和再生受损组织,该方法将可用于

简述基因重组的过程

  由于基因的独立分配或连锁基因之间的交换而在后代中出现亲代所没有的基因组合。  原核生物的基因重组有转化、转导和接合等方式。受体细胞直接吸收来自供体细胞的DNA片段,并使它整合到自己的基因组中,从而获得供体细胞部分遗传性状的现象,称为转化。通过噬菌体媒介,将供体细胞DNA片段带进受体细胞中,使后者

基因重组有哪些类型?

  基因重组是指一个基因的DNA序列是由两个或两个以上的亲本DNA组合起来的。基因重组是遗传的基本现象,病3毒、原核生物和真核生物都存在基因重组现象。减数分裂可能发生基因重组。基因重组的特点是双DNA链间进行物质交换。真核生物,重组发生在减数分裂期同源染色体的非姊妹染色单体间,细菌可发生在转化或转导