阻抗匹配与史密斯(Smith)圆图:基本原理(一)
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配功率放大器输出(RFOUT)与天线之间的匹配LNA/VCO输出与混频器输入之间的匹配匹配的目的是为了保证信号或能量有效地从信号源传送到负载在高频端,寄生元件(比如连线上的电感板层之间的电容和导体的电阻)对匹配网络具有明显的不可预知的影响频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试并进行适当调谐需要用计算值确定电路的结构类型和相应的目标元件值有很多种阻抗匹配的方法,包括计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂设计者必须熟悉用正确的格式输入众多的数据设计人员还需要具有从大量的输出结果中找到有用数据的技能另外,除非计算机是专门为这个......阅读全文
阻抗匹配与史密斯(Smith)圆图:基本原理(七)
在返回阻抗圆图之前,还必需把刚才的点转换成阻抗(此前是导纳),变换之后得到的点记为B',用上述方法,将圆图旋转180°回到阻抗模式沿着电阻圆周移动距离1.4得到点C就增加了一个串联元件,注意是逆时针移动(负值)进行同样的操作可增加下一个元件(进行平面旋转变换到导纳),沿着等电导圆顺时针方向(
阻抗匹配与史密斯(Smith)圆图:基本原理(一)
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配功率放大器输出(RFOUT)与天线之间的匹配LNA/VCO输出与混频器输入之间的匹配匹配的目的是为了保证信号或能量有效地从
射频工程师必知必会——史密斯圆图-(一)
这篇文章盘算了很久,迟迟不敢下笔,对于圆图的巧夺天工实在不敢多语。有人用圆图做阻抗匹配,也有人用圆图做电路调试,甚至还有滤波器的调试。感谢史密斯大神的圆图,让射频设计变得简单——一切逃不开这个⚪。 今天我们尝试着再去学习一下这个圆,水平有限,还望海涵。 上图所示的就是一个
史密斯圆图的一种球面表示法(一)
在哥伦比亚(Christopher Columbus)航行前,所有人都认为地球是平的… 。在过去的许多年中,我将传统的史密斯圆图进行扩展来帮助我理解射频领域中像振荡器设计以及放大器的稳定性这类涉及到负阻抗器件的问题。其概念使得我对于与阻抗有关问题的本质有了更深的理解,并且也证明了这是一个很有用的
阻抗匹配原理(二)
串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。b.并联终端匹配并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现
阻抗匹配原理(一)
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线
HFSS在天线设计上的应用(三)
2)查看回波损耗S11:回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。上面的S11图是天线在2G Hz ~3 G Hz频段内的回波损耗,这个贴片偶极子天线中心频率约为2.45G Hz。3)电压驻波比VSWR:电压驻波比VSWR,是指驻波的电压
射频工程师必知必会——史密斯圆图-(二)
等电抗圆 (1)r 为常数的曲线是圆,其圆心在 ,半径为 (2)x 为常数的曲线也是圆,其圆心在 ,半径为 (3) Γ平面单位圆内的等电阻圆是完整的圆,等电抗圆只是等 x 圆的一部分曲线。 4 Γ复
史密斯圆图的一种球面表示法(三)
Z>0 的半球表面含有所有具有正电阻的阻抗,Z0 的半球含有感抗阻抗,y1 的反射系数也可以在图上表示出来。这种情况说明反射波大于入射波。这便为反射增益,当存在负电阻时会出现这种情况。在球形史密斯图上可以很灵巧地处理这种情况。图10 显示出了球形史密斯图上|ρ|为常数时的曲线和ρ 的相位为常
史密斯圆图的一种球面表示法(二)
史密斯圆图的扩展方法复数形式的阻抗Z=R+jX 表示在图3 的X-Y 平面上。在这个图形中,使用字母来代表不同点的阻抗。A= -∞+0j,B= -50+0j,C=0+0j,D=50+0j 以及E=∞+0j。同样F=0-∞j,G=0-50j,H=0+50j 以及J=0+∞j。此外,R=50Ω
阻抗匹配与史密斯(Smith)圆图:基本原理(五)
图6. 从X-Y轴直接读出反射系数的实部和虚部用导纳表示史密斯圆图是用阻抗(电阻和电抗)建立的一旦作出了史密斯圆图,就可以用它分析串联和并联情况下的参数可以添加新的串联元件,确定新增元件的影响只需沿着圆周移动到它们相应的数值即可然而,增加并联元件时分析过程就不是这么简单了,需要考虑其它的参数通常,
阻抗匹配与史密斯(Smith)圆图:基本原理(二)
我们知道反射系数定义为反射波电压与入射波电压之比:图3. 负载阻抗负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度反射系数的表达式定义为:由于阻抗是复数,反射系数也是复数为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数这里Z0 (特性阻抗)通常为常数并且是实数,是常用的归
阻抗匹配与史密斯(Smith)圆图:基本原理(六)
导纳圆图在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过以复平面原点为中心旋转180°后得到与之对应的导纳点于是,将整个阻抗圆图旋转180°就得到了导纳圆图这种方法十分方便,它使我们不用建立一个新图所有圆周的交点(等电导圆和等电纳圆)自然出现在点(-1, 0)使用导纳圆图,使得添加并联元件
阻抗匹配与史密斯(Smith)圆图:基本原理(四)
完成圆图为了完成史密斯圆图,我们将两簇圆周放在一起可以发现一簇圆周的所有圆会与另一簇圆周的所有圆相交若已知阻抗为r + jx,只需要找到对应于r和x的两个圆周的交点就可以得到相应的反射系数可互换性上述过程是可逆的,如果已知反射系数,可以找到两个圆周的交点从而读取相应的r和x的值过程如下:确定阻抗在史
阻抗匹配与史密斯(Smith)圆图:基本原理(八)
下一步,在图上标出这两个点,A代表zL,D代表z*S然后判别与负载连接的第一个元件(并联电容),先把zL转化为导纳,得到点A'确定连接电容C后下一个点出现在圆弧上的位置由于不知道C的值,所以我们不知道具体的位置,然而我们确实知道移动的方向并联的电容应该在导纳圆图上沿顺时针方向移动直到找到对应
阻抗匹配与史密斯(Smith)圆图:基本原理(三)
更多细节参见图4a 图4a. 圆周上的点表示具有相同实部的阻抗例如,r = 1的圆,以(0.5, 0)为圆心,半径为0.5它包含了代表反射零点的原点(0, 0) (负载与特性阻抗相匹配)以(0, 0)为圆心半径为1的圆代表负载短路负载开路时,圆退化为一个点(以1, 0为圆心,半径为零)与
RF设计中的阻抗匹配及50欧姆的由来(一)
为什么很多射频系统或者部件中,很多时候都是用50欧姆的阻抗(有时候这个值甚至就是PCB板的缺省值) ,为什么不是60或者是70欧姆呢?这个数值是怎么确定下来的,背后有什么意义?本文为您打开其中的奥秘。 我们知道射频的传输需要天线和同轴电缆,射频信号的传输我们总是希望尽可能传
RF设计中的阻抗匹配及50欧姆的由来(二)
当您处理由理想电源,传输线和负载组成的理论电路时,匹配似乎是一项微不足道的常识。 假设负载阻抗ZL是固定的。我们需要做的就是包括一个等于ZL的源阻抗(ZS),然后设计传输线,使其特性阻抗(Z0)也等于ZL。 但是,让我们暂时考虑一下在由众多
声学所:设计出高透射率高普适性声学阻抗匹配层
阻抗匹配层可提高声波在不同介质间的能量传输效率,在换能器设计、无损检测、医学超声成像中发挥重要作用。当前常用的半波长阻抗匹配层及多层复合阻抗匹配层等方法,均只能针对既定两种目标介质进行设计并工作,普适性较差。 近期,中国科学院声学研究所噪声与振动重点实验室研究员杨军和贾晗团队与吉首大学邓科团队
矢量测量的重要性
矢量测量的重要性对各个分量的幅度和相位进行测量的重要性源于以下几个因素。首先,为了全面表征线性网络,确保无失真传输,的确需要进行这两种测量。其次,为了设计高效率匹配网络,必须测量复阻抗。最后,开发计算机辅助工程(CAE)电路仿真程序模型的工程师需要幅度和相位数据来进行模拟。为了执行傅氏逆变换,时域表
矢量网络分析仪概述
矢量网络分析仪器是一种电磁波能量的测试设备。它既能测量单端口网络或两端口网络的各种参数幅值,又能测相位,矢量网络分析仪能用史密斯圆图显示测试数据。 矢量网络分析仪器 一种电磁波能量的测试设备。 矢量网络分析仪的原理与使用力直接取决于系统的动态范围指标。 相位波动参数的测试是利用矢量网络分析
详解无线设计中的LNA和PA运行-(二)
MACOM MAAL-011111 是用于更高频率的 GaAs LNA,可支持 22 至 38 GHz 运行(图 5)。该器件可提供 19 dB 的小信号增益和 2.5 dB 的噪声系数。此 LNA 表面上是一个单级器件,但其内部实际有三个级联级。第一级针对最低噪声和中等增益进行了
详解无线设计中的LNA和PA运行-(一)
对性能、小型化和更高频率的需求,正挑战无线系统中两个关键天线连接元器件的限制:功率放大器(PA) 和低噪声放大器(LNA)。5G 的发展以及 PA 和 LNA 在微波无线电链路、VSAT(卫星通信系统)和相控阵雷达系统中的使用正促成这种转变。这些应用的要求包括较低噪声(对于 LNA)和
材料电磁屏蔽效能测试系统的相关参数介绍
可测量参数: 1. 介电常数: εr’, εr”, tan δ, Cole Cole; 2. 磁导率: μr’, μr”, tanδμ; 3. S参数: 对数幅度、线性幅度、相位、展开相位、群时延、史密斯圆图、极坐标图、实部、虚部和 SWR; 1) 可测材料温度范围:-0℃至125℃; 2
为什么CAN总线支线长度不能太长?(一)
CAN总线网络在应用时,工程师常常会建议总线支线不要太长,那么为什么CAN总线支线不能太长,如果某些环境下必须使用长支线又该怎么办呢?CAN网络的拓扑种类控制器局域网CAN(Controller Area Network),是国际上应用最广泛的现场总线之一,最初是由德国Bosch公司设计的,为解决现
有趣的阻抗变换
阻抗变化在很多人看来很神秘,甚至不可理喻:“什么是匹配网络?”“为什么要在负载电路之前加这么多电感电容?”“如果负载是100欧姆要与源阻抗50欧匹配,直接在负载并联一个100欧负载不就行了吗”……这样的问题常被提出。下面是一个初中物理题,“已知电压源电阻是Zs,问Zl多大时,Zl上的功率最大。推导过
射频和数字电路设计的区别
射频电路: 1.关注阻抗匹配或功率,这是设计中最为关键的两个参数,其他中间参数都可以由功率和阻抗来确定; 2.关注频率响应,通常在频域内进行分析,因为对于射频电路模块而言,带宽范围很重要; 3.喜欢用网络分析仪、频谱分析哎仪或噪声测试仪等进行测试,这些仪器输入/输出阻抗低,一般都是
中国科研团队成功实现高效水气跨介质声通信
原文地址:http://news.sciencenet.cn/htmlnews/2023/11/511863.shtm跨介质的水-气声通信能高效实现吗?中国科研团队最新完成的一项声学超材料结合研究成果给出了肯定的答案。记者7日从中国科学院声学研究所获悉,该所噪声与音频声学实验室博士研究生周萍及其导师
高速数字电路的设计与仿真(一)
高速数字系统设计成功的关键在于保持信号的完整,而影响信号完整性(即信号质量)的因素主要有传输线的长度、电阻匹配及电磁干扰、串扰等。 设计过程中要保持信号的完整性必须借助一些仿真工具,仿真结果对PCB布线产生指导性意见,布线完成后再提取网络,对信号进行布线后仿真,仿真没有问题后才能送出加
导电塑料电位器和数字电位器的相关介绍
导电塑料电位器:阻值范围宽、线性精度高、分辨力强,而且耐磨寿命特别长。虽然它的温度系数和接触电阻较大,但仍能用于自动控制仪表中的模拟和伺服系统。 数字电位器:采用集成电路技术制作的电位器;把一串电阻集成到一个芯片内部,采用MOS管控制电阻串联 网络与公共端连接;控制精度由控制的bit位数决定