RF电路和数字电路如何在同块PCB上和谐相处?(二)

(4) 电源的星形布线星形布线是模拟电路设计中众所周知的技巧(如图1所示) 。星形布线———电路板上各模块具有各自的来自公共供电电源点的电源线路。在这种情况下,星形布线意味着电路的数字部分和RF 部分应有各自的电源线路,这些电源线应在靠近IC 处分别去耦。这是一个隔开来自数字部分和来自RF 部分电源噪声的有效方法。如果将有严重噪声的模块置于同一电路板上,可以将电感(磁珠) 或小阻值电阻(10 Ω) 串联在电源线和模块之间,并且必须采用至少10 μF 的钽电容作这些模块的电源去耦。这样的模块如RS 232 驱动器或开关电源稳压器。(5) 合理安排PCB 布局为减小来自噪声模块及周边模拟部分的干扰,各电路模块在板上的布局是重要的。应总是将敏感的模块( RF部分和天线) 远离噪声模块(微控制器和RS 232 驱动器)以避免干扰。(6) 屏蔽RF 信号对其他模拟部分的影响如上所述,RF 信号在发送时会对其他敏感模拟电路模......阅读全文

RF电路和数字电路如何在同块PCB上和谐相处?(二)

(4) 电源的星形布线星形布线是模拟电路设计中众所周知的技巧(如图1所示) 。星形布线———电路板上各模块具有各自的来自公共供电电源点的电源线路。在这种情况下,星形布线意味着电路的数字部分和RF 部分应有各自的电源线路,这些电源线应在靠近IC 处分别去耦。这是一个隔开来自数字部分和来自RF

RF电路和数字电路如何在同块PCB上和谐相处?(一)

单片射频器件大大方便了一定范围内无线通信领域的应用,采用合适的微控制器和天线并结合此收发器件即可构成完整的无线通信链路。它们可以集成在一块很小的电路板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等众多领域。1 数字电路与模拟

模拟电路和数字电路PCB设计的区别详解

  工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计。模拟和数字领域的布线策略有一些类似之处,但要获得更好的结果时,由于其布线策略不同,简单电路布线设

浅析射频集成电路与数字电路之间的联系

  单片射频器件大大方便了一定范围内无线通信领域的应用,采用合适的微控制器和天线并结合此收发器件即可构成完整的无线通信链路。它们可以集成在一块很小的电路板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等众多领域。

德国:学会与洪水“和谐相处”

游客与帕绍市政厅墙上的水位线合影留念。   靠近奥地利边境的德国城市帕绍是座历史名城,交通便利、旅游业发达,但因其位于多瑙河、因河及伊尔茨河三河交汇处而频遭水灾。两个多月前,一场500年未遇的洪灾侵袭帕绍,数万居民遭遇断水断电,13米的洪水位达历史新高。当问及抗洪防灾经验时,帕绍旅游局总经理皮亚・

RF无线射频电路设计中的常见问题及设计原则(一)

  1. 引言  射频(RF)PCB设计,在目前公开出版的理论上具有很多不确定性,常被形容为一种“黑色艺术”。通常情况下,对于微波以下频段的电路(包括低频和低频数字电路),在全面掌握各类设计原则前提下的仔细规划是一次性成功设计的保证。对于微波以上频段和高频的PC类数字电路。则需要2~3个版本

数字电路基础之逻辑电路(二)

  下面我们对3种基本逻辑电路进行说明。  串联电路,AND电路  AND电路也被称为“逻辑与”,只有当两个输入同时为1时,才会输出1。  ◇逻辑表达式  用“?”表示 (例)Y=A?B  ◇电路符号    ◇真值表    让我们仔细看一看AND电路的工作方式。如果用开关和LED来表现AND

射频应用设计时的五大“黑色艺术”(一)

  射频电路板设计由于在理论上还有很多不确定性,因此常被形容为一种“黑色艺术”,但这个观点只有部分正确,RF电路板设计也有许多可以遵循的准则和不应该被忽视的法则。  不过,在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。当然,有许多重要的

数字电路之数字集成电路IC(二)

  注意误操作和扇出  在连接“标准逻辑IC”时,需要考虑一个输出最大可连接的IC数量。  在TTL IC中,可连接IC的数量受到输出电流的限制,我们把允许连接的IC上限个数称为扇出。只要想起TTL IC是由双极性晶体管构成的,就能容易地想象出开关切换时是需要电流的。TTL IC

高速数字电路的设计与仿真(二)

  从图中看出,信号线加长后,由于传输线的等效电阻、电感和电容增大,传输线效应明显加强,波形出现振荡现象。因此在高频PCB布线时除了要接匹配电阻外,还应尽量缩短传输线的长度,保持信号完整性。  在实际的PCB布线时,如果由于产品结构的需要,不能缩短信号线长度时,应采用差分信号传输。差分信号有

射频电路设计常见问题盘点(一)

在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。    当然,有许多重要的 RF 设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以及波长和驻波等,在全面掌握各类设计原则前提下的仔细规划是一次性成功设计的保证。 

单片机电路与数字电路的抗干扰方法(二)

  3、提高敏感器件的抗干扰性能  提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声的拾取,以及从不正常状态尽快恢复的方法。  提高敏感器件抗干扰性能的常用措施如下:  (1)布线时尽量减少回路环的面积,以降低感应噪声。  (2)布线时,电源线和地线要尽量粗。除减小压降外,更重要的是

高速数字电路封装电源完整性分析(二)

  从图4的测量结果,我们可以考到三种结构的GBN行为有很大的差异。首先考虑只有单一Pkg时的S参数,在1.3Ghz之前的行为像一个电容,在1.5Ghz后才有共振模态产生;考虑单一PCB,在0.5Ghz后就有共振模态产生,像0.73Ghz(TM01)、0.92Ghz(TM10)、1.17Gh

数字电路基础之逻辑电路(一)

  本文我们将从“数字意味着什么?”开始,讲解数字电路的基本设计方法。什么是“模拟”和“数字”。在自然界中,象声音、温度、光等信息是以连续的值进行变化的。这种连续值就称作“模拟”。  而在计算机的世界里,信息是以一段一段的离散值表示的。这种离散值就称作“数字”。  比方说模拟和数字就相当于实数与整数

浅谈RF电路设计

前言做了多年的RF研发工作,在润欣科技从事RF芯片的支持工作也有7年之久,对于RF电路的设计经验,在这里和大家一起分享一下,希望以下浅谈的内容对做RF设计工作的工程师会有一点帮助,我们闲话少说,直接进入正题。EVB板的参考设计让我们事半功倍当我们设计上接触一个全新的RF芯片,要求我们能够快速的了解这

RF无线射频电路设计中的常见问题及设计原则(二)

  3.2.2电气分区原则  功率传输原则。蜂窝电话中大多数电路的直流电流都相当小,因此,布线宽度通常不是问题。不过.必须为高功率放大器的电源单独设定一条尽可能宽的大电流线,以将传输压降减到最低。为了避免太多电流损耗,需要采用多个通孔来将电流从某一层传递到另一层。  高功率器件的电源去耦。如

数字电路之数字集成电路IC(一)

 本期将讲解数字IC的基础和组合电路。  什么是数字集成电路IC?  数字集成电路是指集成了一个或多个门电路的半导体元器件。数字集成电路拥有多个种类,根据用途不同,可分为如下几类。  ◇微处理器(microcomputer):进行各种处理的集成电路  ◇存储器:记录数据的集成电路  ◇标准逻辑IC:

使用EDA分析PCB

Q:请问就你个人观点而言:针对模拟电路(微波、高频、低频)、数字电路(微波、高频、低频)、模拟和数字混合电路(微波、高频、低频),目前PCB设计哪一种EDA工具有较好的性能价格比(含仿真)?可否分别说明。A:限于本人应用的了解,无法深入地比较EDA工具的性能价格比,选择软件要按照所应用范畴来讲,我主

射频电路设计常见问题盘点(二)

2)RF 与 IF 走线应尽可能走十字交叉,并尽可能在它们之间隔一块地:    正确的 RF 路径对整块 PCB 板的性能而言非常重要,这也就是为什么元器件布局通常在手机 PCB 板设计中占大部分时间的原因。    在手机 PCB 板设计上,通常可以将低噪音放大器电路放在 PC

EMI生产的原因与预防

EMI(Electro Magnetics Interfrence),即电磁干涉。随着IC器件集成度提高、设备小型化和器件运行速度加快,电子产品中的EMI问题也更加严重。对于PCB而言,EMI是如何产生的呢?外部的传输线或者PCB的印制线存在RF电流(射频电流),电流流到负载后返回源头,这样就形成了

射频工程师必看:经验分析总结-(一)

  在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。    电磁波频率低于 100khz 时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于 100khz 时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,

射频和数字电路设计的区别

  射频电路:  1.关注阻抗匹配或功率,这是设计中最为关键的两个参数,其他中间参数都可以由功率和阻抗来确定;  2.关注频率响应,通常在频域内进行分析,因为对于射频电路模块而言,带宽范围很重要;  3.喜欢用网络分析仪、频谱分析哎仪或噪声测试仪等进行测试,这些仪器输入/输出阻抗低,一般都是

高速数字电路的设计与仿真(一)

  高速数字系统设计成功的关键在于保持信号的完整,而影响信号完整性(即信号质量)的因素主要有传输线的长度、电阻匹配及电磁干扰、串扰等。  设计过程中要保持信号的完整性必须借助一些仿真工具,仿真结果对PCB布线产生指导性意见,布线完成后再提取网络,对信号进行布线后仿真,仿真没有问题后才能送出加

关于数字电路名词解释总结

  本文主要对数字电路名词解释进行了总结,一起学习一下:  模拟信号: 随时间做连续变化的信号。  数字信号: 不随时间做连续变化的信号,信号数值的大小和增减可采用数字形式。  门电路: 输出信号与输入信号之间存在一定逻辑关系的开关电路。  “与”逻辑: 当决定一件事情的各种条件全部具备后,这件事才

单片机电路与数字电路的抗干扰方法(一)

  形成干扰的基本要素有三个:  (1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。  (2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的

做好一块PCB板要注意的五个问题(二)

  有两种方法能使高速电路在相对长的线上工作而无严重的波形失真,TTL对快速下降边沿采用肖特基二极管箝位方法,使过冲量被箝制在比地电位低一个二极管压降的电平上,这就减少了后面的反冲幅度,较慢的上升边缘允许有过冲,但它被在电平“H”状态下电路的相对高的输出阻抗(50~80Ω)所衰减。此外,由于

浅析EDA技术在数字电路设计方案中的影响(二)

  3、基于EDA技术进行数字电路设计研究  EDA技术在数字系统中应用以基于ALTEraEPM7128SLC84-15芯片和MAX PlusII 10.0软件平台数字钟设计为例,讨论EDA技术在数字系统中具体应用。  3.1、EDA技术设计流程  在设计方法上,EDA技术为数字电子电路设计

射频应用设计时的五大“黑色艺术”(二)

  二、物理分区、电气分区设计分区  可以分解为物理分区和电气分区。物理分区主要涉及元器件布局、朝向和屏蔽等问题;电气分区可以继续分解为电源分配、RF走线、敏感电路和信号以及接地等的分区。  1、我们讨论物理分区问题  元器件布局是实现一个优秀RF设计的关键,最有效的技术是首先固定位于RF路

可穿戴PCB设计师需要关注的三大块(二)

射频/微波设计考虑便携式技术和蓝牙为可穿戴设备中的射频/微波应用铺平了道路。今天的频率范围正变得越来越动态。还在几年前,甚高频(VHF)被定义为2GHz~3GHz。但现在我们可以见到范围在10GHz到25GHz之间的超高频(UHF)应用。因此对可穿戴PCB来说,射频部分要求更加密切地关注布线

射频应用设计时的五大“黑色艺术”(三)

  此外,整块板上各个地方的接地都要十分小心,否则会在引入一条耦合通道。有时可以选择走单端或平衡RF信号线,有关交叉干扰和EMC/EMI的原则在这里同样适用。平衡RF信号线如果走线正确的话,可以减少噪声和交叉干扰,但是它们的阻抗通常比较高,而且要保持一个合理的线宽以得到一个匹配信号源、走线和