Antpedia LOGO WIKI资讯

微波光子滤波技术概述(二)

1.2、负抽头的实现非相干的微波光子滤波器一般只能实现正抽头,这对于滤波器的应用不利。因为传统正系数的全光滤波器只能实现低通的滤波功能,而且其滤波形状受到极大的限制,滤波效果往往不太理想,所以负抽头对全光滤波器来说一直都是设计中的热点问题。这方面的研究在20世纪80年代就已经展开,但在最近才获得重大的进展。为了解决此限制,目前所采用的主要方法有以下4种:1)初期的负抽头实现的出发点基本是以光电结合的方式进行的,称为差分探测[24]。图6是其工作原理示意图。将抽头分为两部分,一部分用来实现正抽头,一部分用来实现负抽头。这两部分光信号分别被输入到两个光探测器中,然后在两个光探测器上将光信号转换成电信号,最后在电域中执行电信号相减运算,实现两路信号在相位上相差π,所以可以分别得到正负抽头。这种实现方法缺陷很明显,负抽头是通过电子设备实现的,所以滤波性能受到电子设备的性能和有源设备带来额外的噪声影响以及这种结构很难重构,而且,器件价格也......阅读全文

微波光子滤波技术概述(二)

1.2、负抽头的实现非相干的微波光子滤波器一般只能实现正抽头,这对于滤波器的应用不利。因为传统正系数的全光滤波器只能实现低通的滤波功能,而且其滤波形状受到极大的限制,滤波效果往往不太理想,所以负抽头对全光滤波器来说一直都是设计中的热点问题。这方面的研究在20世纪80年代就已经展开,但在最近才获得重大

微波光子滤波技术概述(一)

微波光子技术[1]是伴随着半导体激光器、集成光学、光纤波导光学和微波单片集成电路的发展而产生的一种新兴技术,是微波和光子技术结合的产物,它在射频(RF)信号的产生、传输和处理等方面具有潜在的应用前景。由于射频信号的光滤波技术具有可实现宽带可调谐滤波的功能,因而能够克服电子瓶颈、滤除强干扰信号等优势。

基于光纤环的可调谐微波光子滤波器

由于在微波/毫米波光纤系统中潜在的应用价值,光域上的微波信号处理技术引起了众多研究者的兴趣。比起传统的电子微波滤波器,微波光子滤波器有着电磁环境兼容性、体积小、重量轻和较宽的工作带宽等。鉴于光纤光栅(FBG)能以灵巧的方式构建微波光子滤波器,近年提出了许多基于FBG的微波光子滤波器结构,如不平衡马赫

光纤光栅在微波光子滤波器中的应用

光纤光栅具有体积小、质量轻、波长选择性好、不受非线性效应影响、偏振不敏感、带宽范围大、附加损耗小、器件微型化、耦合性能好,可与其他光纤器件融成一体等特性;而且光纤光栅制作工艺比较成熟,易于形成规模生产,成本低,具有很好的实用性,其优越性是其他许多器件无法替代的。这使得光纤光栅以及基于光纤光栅的器件成

微波光子信号的产生(二)

1.3、谐波频率产生外差法的主要缺陷在于需要进行差拍的两路不同频率的光保持稳定的相位关系以确保获得比较小的相位噪声,而如果能从一个光源出发通过各种非线性效应产生高次谐波分量,就可以得到具有相对稳定相位关系的若干光频率,只要能从其中选取两个进行拍频,则可以解决这个问题。在前面提到的调制非线性就是一个例

微波光子信号的产生(一)

伴随微波射频通信技术的发展与光通信技术的日益成熟,两者间的相互渗透成为一种需要并逐步成为可能。在现有器件条件下,在100GHz带宽范围内,电、光模拟信号可以很方便的自由转换,在光域对模拟信号进行选频滤波,放大也可以方便地实现,这就为微波光子(Microwave Photonics)技术出现提

微波光子雷达及关键技术(三)

图7、PHODIR 与商用SEAEAGLE 成像对比Fig. 7 Imaging result comparison between the PHODIR and SEAEAGLE(a)目标的图像;(b)S 波段探测到的一维距离像;(c)X 波段探测到的一维距离像;(d)利用上述融合算法合成

微波光子雷达及关键技术(四)

2、微波光子雷达关键技术雷达是通过发射电磁波并接收回波来探测目标位置、速度和特性的系统,一般由中控设备、发射机、接收机等组成,基本原理如图14所示。波形发生器产生的雷达波形与本振信号混频至所需波段,通过波束形成网络实现发射波束的空间指向控制,经由阵列天线辐射到空间。接收时,接收到的信号经过分发、切换

微波光子雷达及关键技术(二)

美国休斯飞机公司电光混合真延时模块示意Fig. 2 Hybrid electronic and optical true time delay module of Hughes Aircraft进入21世纪后,随着光纤通信的蓬勃发展,光子技术越来越成熟,光电转换效率不断提升,微波光子技术也得到了飞速

微波光子雷达及关键技术(五)

2.3 信道化接收与混频微波光子信道化接收机在光域将宽带的接收信号分割到多个窄带的处理信道中,然后对每个窄带信道中的接收信号进行光电探测和信号处理。相比传统信道化接收机,微波光子信道化具有较强的抗电磁干扰能力、较大的承载带宽和瞬时带宽、极低的传输损耗等显著优势。而且信道化本质上是1个多通道并行处理系