IGBT短路保护电路的设计
固态电源的基本任务是安全、可靠地为负载提供所需的电能。对电子设备而言,电源是其核心部件。负载除要求电源能供应高质量的输出电压外,还对供电系统的可靠性等提出更高的要求。IGBT是一种目前被广泛使用的具有自关断能力的器件,开关频率高,广泛应用于各类固态电源中。但如果控制不当,它很容易损坏。一般认为IGBT损坏的主要原因有两种:一是IGBT退出饱和区而进入了放大区使得开关损耗增大;二是IGBT发生短路,产生很大的瞬态电流,从而使IGBT损坏。IGBT的保护通常采用快速自保护的办法即当故障发生时,关断IGBT驱动电路,在驱动电路中实现退饱和保护;或者当发生短路时,快速地关断IGBT。根据监测对象的不同IGBT的短路保护可分为Uge监测法或Uce监测法二者原理基本相似,都是利用集电极电流IC升高时Uge或Uce也会升高这一现象。当Uge或Uce超过Uge sat或Uce sat时,就自动关断IGBT的驱动电路。由于Ug......阅读全文
IGBT短路保护电路的设计
固态电源的基本任务是安全、可靠地为负载提供所需的电能。对电子设备而言,电源是其核心部件。负载除要求电源能供应高质量的输出电压外,还对供电系统的可靠性等提出更高的要求。IGBT是一种目前被广泛使用的具有自关断能力的器件,开关频率高,广泛应用于各类固态电源中。但如果控制不当,它很容易损坏。一般认
聚合物锂电池保护电路设计
1、过充的限制电压应小于4.25V(单节电芯); 2、过放的限制电压应大于2.50V(单节电芯); 3、保护电路应具有过电流及短路保护功能; 4、与电芯连接设计,请考虑尽可不要在组装或使用中过程有让极耳受力,以免损及电芯极耳。
继电保护实验仪外围电路设计相关
STC90C58RD+是该系列单片机中的一个型号共40个引脚,其内部结构包括:其用户应用程序空间为32K字节,足够存储校验装置使用的显示器生成的字模代码;片上集成1280字节RAM,保证系统软件运行流畅;35个通用I/O口,为实现系统各功能控制提供充足的控制引脚;内置ISP/工AP功能;片内集成
一种漏电保护器电路设计
随着漏电断路器使用推广及人民生活水平提高,家用电器等设备增加,而家用电器普遍存在感性负载和容性负载,这些负载在使用中易产生感应电动势、浪涌电压以及冲击电流,从而要求漏电断路器对抗浪涌电压、冲击电流等干扰的能力越来越强,使漏电断路器在各种情况下能可靠使用,确保漏电断路器不出现误跳和失效现象
基于两级di/dt检测IGBT模块短路策略(四)
图5为本文设计的两级di/dt分别检测两类短路的波形。通过观察图5(a)实验波形可知,发生一类短路后开通约2.4 μs时,第二级di/dt已检测出一类短路状态并将短路信号送给前级CPLD,驱动器采取相应的软关断措施将电流最大值限制在3.16 kA,短路持续时间为2 μs,短路损耗
基于两级di/dt检测IGBT模块短路策略(三)
传统使用VCE进行短路检测时,因需兼顾检测一类短路和二类短路的需要,VCE需要较高的阈值,这使得驱动器只能在IGBT退饱和时的VCE快速上升阶段检测到IGBT的短路状态。利用两级di/dt分别检测两类短路,会在VCE检测盲区时间内就检测到两类短路状态。因此,无论是一类短路还是二类短路,利
基于两级di/dt检测IGBT模块短路策略(一)
为了解决传统VCE在检测大功率绝缘栅双极型晶体管(IGBT)模块的短路故障时存在的问题,在分析了IGBT短路特性的基础上,提出了一种基于两级电流变化率(di/dt)检测IGBT两类短路故障的策略。该策略可以使驱动器更早地采取保护措施,限制IGBT的短路电流和短路功耗,减小关断尖峰电压。基
基于两级di/dt检测IGBT模块短路策略(二)
IGBT发生短路时的电流是额定电流的8~10倍[4]。如果不能够快速地检测到短路故障,同时配合适当的软关断保护措施,IGBT将会被损坏。 2、 两级di/dt检测短路原理 封装后的IGBT模块内部有两个发射极,一个是辅助e极,另一个是功率E极,辅助e极和功率E极之间有一个小于10 n
关于聚合物锂电池保护电路设计的简介
1、过充的限制电压应小于4.25V(单节电芯); 2、过放的限制电压应大于2.50V(单节电芯); 3、保护电路应具有过电流及短路保护功能; 4、与电芯连接设计,请考虑尽可不要在组装或使用中过程有让极耳受力,以免损及电芯极耳。
电路设计中可能用到的浪涌保护器件科普
电气产品在使用中如果出现浪涌电压,会导致电路的电源电压出现突变,影响电路的正常工作,如果是在数字信号线上出现浪涌电压,更会导致数字逻辑出错,甚至损坏接口电路。由于浪涌脉冲的频率很低,带宽较宽(B=1/f),如果是低通滤波器,由于其原理是允许低于截止频率的信号通过,而高于截止频率信号不能通过,
继电保护实验仪校验装置电量测量电路设计
继电保护实验仪输出的电量信号一般为几百至上千伏特的交、直流电压信号和几十至上百安培的交、直流电流信号。因此,输入电路应对其进行衰减,达到A/D转换器可正常工作的范围。A/D转换器可识别的信号为直流电压信号,需将输入的电流信号转换为电压信号,交流信号通过AC/DC转换,变为直流信号。
继电保护实验仪校验装置A/D转换电路设计
模拟信号是不能被微处理器直接测量识别出来的,只有通过A/D转换器将模拟信号转换为微处理器可识别的数字信号,才能通过微处理器处理并由液晶显示器显示出测量结果。 电力行业标准要求,校验装置分辨率应比被校装置的显示分辨率高一位。因此,在本校验装置中选用4 1/2位双斜率积分A/D转换器ICL7135
锂电池保护板短路无保护的介绍
1. VM端电阻出现问题:可用万用表一表笔接IC2脚,一表笔接与VM端电阻相连的MOS管管脚,确认其电阻值大小。看电阻与IC、MOS管脚有无虚焊。 2. IC、MOS异常:由于过放保护与过流、短路保护共用一个MOS管,若短路异常是由于MOS出现问题,则此板应无过放保护功能。 3. 以上为正常
锂电池保护板对短路的保护作用
严格来讲,他是一个电压比较型的保护,也就是讲是用电压的比较直接关断或驱动的,不要经过多余的处理。 短路延时的设置也很关键,因为在我们的产品中,输入滤波电容都是很大的,在接触时第一时间给电容充电,此时就相当于电池短路来给电容充电。
锂电池短路保护的概述
电池在对负载放电过程中,若回路电流大到使U>0.9V(该值由控制IC决定,不同的IC有不同的值)时,控制IC则判断为负载短路,其 “DO”脚将迅速由高电压转变为零电压,使T2由导通转为关断,从而切断放电回路,起到短路保护作用。短路保护的延时时间极短,通常小于7微秒。其工作原 理与过电流保护类似,
锂电池保护板短路保护控制原理
在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻, 每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管
电路设计中-减小电路板上串扰的设计原则
随着电路板上走线密度越来越高,信号串扰总是一个难以忽略的问题。因为不仅仅会影响电路的正常工作,还会增加电路板上的电磁干扰。在电路板上的一些高频信号会串扰到MCU电路或者MCU的I/O接口电路,形成共模电压,众所周知,共模电压在电路设计时是最让人讨厌的玩意儿,因此,设计电路板时要避免各种可能造
从元器件选型到EMC测试要点,教你如何设计保护电路
随着电子产品集成度、处理器速度、开关速率和接口速率的不断提升,电子产品ESD/EMI/EMC问题日益突出,尤其是当手持电子设备向轻薄小巧方向发展而且产品功能不断增加时,它们的输入/输出端口也随之增多,导致静电放电进入系统并干扰或损坏集成电路,电路保护是最容易出现问题的部分,也是容易被忽略的问
锂电池保护板无短路保护的故障分析
A、VM端电阻出现问题,可用万用表一支表笔接触IC的VM端,另一只表笔接触与VM端电阻相连的MOS管部分(即P-管脚),确认电阻值大小,如果电阻阻值出现问题,则可用烙铁来判定电阻上虚焊、断裂,还是来料的问题。 B、MOS管放电控制端不能闭合,要判断是不是MOS管出现问题,最简单的方法就是用一个
电气控制系统的短路保护
电气控制系统必须在安全可靠的前提下来满足生产工艺要求。为此,在电气控制系统的设计与运行中,必须充分考虑系统发生各种故障和不正常情况的可能性,在控制系统中设置相应保护装置。保护环节是所有电气控制系统不可缺少的组成部分。对于低压电动机常用的保护环节如下所示: 短路保护 当电器或线路发生绝缘遭到损
关于电池过流短路保护的介绍
过流保护:为了防止电池的外部五金被导体连接短接在一起,而直接影响到电池的寿命。 短路保护:为防止电池的外部受到导体把电池的正负极连接后造成短路,保证安全性能。 工作原理:当放电时或正负极遭金属物误触造成过电流或短路,为确保安全,立即停止放电。
关于锂电池短路保护的介绍
短路保护其实也是过电流保护的一种,只不过当系统短路以后,电流理论上会变成无限大,这样产生的热量也是无限大,如果要等到软件反应过来再保护,锂动力电池包可能已损坏,因此,对于短路保护一般是采用硬件来自动触发,触发后传递给控制IC一个信号即可。 当锂动力电池包P+与P-输出电流超过短路电流值,并达到
浅谈RF电路设计
前言做了多年的RF研发工作,在润欣科技从事RF芯片的支持工作也有7年之久,对于RF电路的设计经验,在这里和大家一起分享一下,希望以下浅谈的内容对做RF设计工作的工程师会有一点帮助,我们闲话少说,直接进入正题。EVB板的参考设计让我们事半功倍当我们设计上接触一个全新的RF芯片,要求我们能够快速的了解这
关于锂电池过流保护和短路保护的介绍
1、过流保护 当放电电流超过过流保护电流(通常小于5C电流),且这个电流保持在过流延迟时间(12ms)以上时,保护板切断放电回路,电流停止放电,当负载解除后电池恢复放电功能,保护板恢复到正常状态。 2、短路保护 当保护板的输出端P+ P-直接短接且时间维持在300us以上时,保护板切断放电
模拟电路和数字电路PCB设计的区别详解
工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计。模拟和数字领域的布线策略有一些类似之处,但要获得更好的结果时,由于其布线策略不同,简单电路布线设
全面详解射频技术原理电路及设计电路(一)
射频(RF)技术—基本介绍 RF(Radio Frequency)技术被广泛应用于多种领域,如:电视、广播、移动电话、雷达、自动识别系统等。专用词RFID(射频识别)即指应用射频识别信号对目标物进行识别。RFID的应用包括: ● ETC(电子收费) ● 铁路机车车辆识别与跟踪 ● 集装箱识别
锂电池短路保护控制过程介绍
短路保护是过电流保护的一种极限形式,其控制过程及原理与过电流保护一样,短路只是在相当于在P P-间加上一个阻值小的电阻(约为0Ω)使保护板的负载电流瞬时达到10A以上,保护板立即进行过电流保护。
定时器555电路设计之内部电路解析
首先介绍下555的内部电路电路结构,如下,其中,三极管起控制作用,A1为反向比较器,A2为同向比较器,比较器的基准电压由电源电压+Vcc及内部电阻的分压比决定。RS触发器具有复位控制功能,可控制三极管的导通与截止。555内部电路 >>>>触摸开关电路 555组成单稳态触发器可以用作触摸开关,电路
变频器逆变模块故障分析与处理方法
变频器逆变模块损坏多半是由于驱动电路损坏致使1个桥臂上的2个开关器件同一时间导通所造成的。变频器逆变功率模块损坏是不管在矢量变频器还是节能变频器等其他变频设备上常见到的故障,解决这种问题只有查到损坏的根本原因,并首先消除再次损坏的可能,才能更换逆变模块,否则换上去的新模块会再损坏。 一
半导体集成电路的设计保障
1) 常规可靠性设计技术。包括冗余设计、降额设计、灵敏度分析、中心值优化设计等。 2) 针对主要失效模式的器件设计技术。包括针对热载流子效应、闩锁效应等主要失效模式,合理设计器件结构、几何尺寸参数和物理参数。 3) 针对主要失效模式的工艺设计保障。包括采用新的工艺技术,调整工艺参数,以提高半