电离辐射引起核内染色质结构调控的新证据
染色质是真核生命遗传物质DNA在细胞核内的存在形式,染色质根据细胞的活动状态和响应过程,如DNA复制、基因转录、DNA损伤响应和修复等,进行结构调节.染色质结构受电离辐射发生双链断裂(DSB)后的解聚现象已有报道,但是学界缺乏关于核内原位的染色质结构改变的证据支持,DNA发生双链断裂后,损伤响应和修复蛋白形成的修复聚合体亚结构图像亦不清楚. 近日,中国科学院近代物理研究所科研人员利用单分子定位显微镜STORM发现,HeLa细胞受X射线辐照后,其核内染色质由200~400 nm致密的不规则骨架组织发生解聚并重塑为分散的亚100 nm纤维结构.借助研究人员开发的单分子定位漂移和双色校正算法,双色纳米成像实验显示,H2AX的磷酸化过程主要依赖染色质结构,DSB修复复合体中γ-H2AX、MDC1和53BP1等修复因子,表现为微米尺度的共定位和纳米尺度的交错亚结构.这些数据揭示体内染色质组织的多态性和随细胞DNA损伤应激响应的动态行......阅读全文
电离辐射引起的DNA损伤介绍
电离辐射损伤DNA有直接和间接的效应,直接效应是DNA直接吸收射线能量而遭损伤,间接效应是指DNA周围其他分子(主要是水分子)吸收射线能量产生具有很高反应活性的自由基进而损伤DNA。电离辐射可导致DNA分子的多种变化:①碱基变化 主要是由OH-自由基引起,包括DNA链上的碱基氧化修饰、过氧化物的形成
电离辐射引起核内染色质结构调控的新证据
染色质是真核生命遗传物质DNA在细胞核内的存在形式,染色质根据细胞的活动状态和响应过程,如DNA复制、基因转录、DNA损伤响应和修复等,进行结构调节.染色质结构受电离辐射发生双链断裂(DSB)后的解聚现象已有报道,但是学界缺乏关于核内原位的染色质结构改变的证据支持,DNA发生双链断裂后,损伤响应
关于电离辐射引起的DNA损伤的介绍
电离辐射损伤DNA有直接和间接的效应,直接效应是DNA直接吸收射线能量而遭损伤,间接效应是指DNA周围其他分子(主要是水分子)吸收射线能量产生具有很高反应活性的自由基进而损伤DNA。电离辐射可导致DNA分子的多种变化: ①碱基变化 主要是由OH-自由基引起,包括DNA链上的碱基氧化修饰、过氧化
电离辐射
例如,核泄漏、医院的X光透视等都属于电离辐射。电离辐射会破坏人体组织里分子和原子之间的化学键,可能对人体重要的生化结构与功能产生严重影响。最容易为辐射所伤的身体部分包括肠胃上皮细胞以及生成血细胞的那些骨髓细胞。电离辐射对人体健康的伤害是非常严重的,我们应该尽量远离。
非电离辐射
与电离辐射相比,非电离辐射对人体健康的影响要弱很多,但是也不能够忽视。如果接触过量的非电离辐射,或者长期接触强的电磁波,也会对人体的精神系统、免疫系统、生殖系统等产生影响。例如日常我们接触到的电脑、手机、家电产生的电磁辐射都属于非电离辐射。孕妇、老人、儿童以及抵抗力低的病人,由于其自身免疫力不同于普
染色质的组成DNA的简介
细胞中编码和控制的信息是与DNA分子紧密地联系在一起的。DNA与染色质有着重大联系。DNA是一种高分子聚合物,即由重复单位构成的大分子。每一单位都由三种较小分子组成,它们彼此结合形成核苷酸。碱基共有四种:胸腺嘧啶(T),胞嘧啶(C),腺嘌呤(A),鸟嘌呤(G)。人的碱基比例 A:T:G:C是29
染色质免疫沉淀DNA分析
实验概要染色质免疫共沉淀是一种强力的方法,来联系蛋白质或其修饰的定位与基因组的关系。染色质分离并用特异性抗体判断是否与特异性 DNA 序列相结合。染色质免疫沉淀法亦可用来检测目的位点在基因组中的时空分布(用芯片或 DNA 测序)。本操作规程详细阐述了交联染色质免疫沉淀 (X-ChIP) 实验的具
染色质免疫沉淀DNA分析
实验概要染色质免疫共沉淀是一种强力的方法,来联系蛋白质或其修饰的定位与基因组的关系。染色质分离并用特异性抗体判断是否与特异性 DNA 序列相结合。染色质免疫沉淀法亦可用来检测目的位点在基因组中的时空分布(用芯片或 DNA 测序)。本操作规程详细阐述了交联染色质免疫沉淀 (X-ChIP) 实验的具
染色质DNA基因组的介绍
凡是具有细胞形态的生物其遗传物质都是DNA,只有少数病毒的遗传物质是RNA。在真核细胞中,每条未复制的染色体包含一条纵向贯穿的DNA分子。狭义而言,某一生物的细胞中储存于单倍染色体组中的总遗传信息,组成该生物的基因组。真核生物基因组DNA的含量比原核生物高得多。 突变分析结果表明,并非所有基因
DNA的化学检测项目介绍Y染色质
Y染色质介绍: 男性Y染色体长臂远侧由异染色质构成,如用荧光染料染色时,可出现强荧光。Y染色质正常值: 可数100个细胞,计算阳性率,男胎的Y小体>50%,大于10%判为男胎;女胎的Y小体占0%-1%,小于5%则判为女胎。Y染色质临床意义: 临床上检查Y小体,也关联到X连锁遗传病,如血友病等只
DNA的化学检测项目介绍X染色质
X染色质介绍: 染色质与染色体是在细胞周期的不同时间所呈现形态结构不同的同一物质。X染色质正常值: 在妊娠16周前后,从孕妇腹壁外采取胎儿的羊水,用低速离心,使羊水中漂浮的胎儿脱落细胞沉淀,取沉淀物。镜下检查可数细胞100个,算出X小体的百分率。男胎的X小体占0%-2%,小于5%可判为男胎。X染
染色质DNA的二级结构介绍
生物的遗传信息储存在DNA的核苷酸序列中,生物界物种的多样性也寓于DNA分子4种核苷酸千变万化的排列之中。DNA分子不仅一级结构具有多样性,而且二级结构也具有多态性。所谓二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。DNA二级结构构型分3种: ①B型DNA(右手双螺旋DNA),是“
近物所用新方法揭示电离辐射对线粒体DNA超螺旋构象影响
中科院近代物理研究所辐射生物医学研究组的科研人员研究发现,电离辐射能够引起显著的线粒体DNA超螺旋构象变化,这对进一步研究电离辐射对线粒体功能的影响具有指导意义。 线粒体DNA是人体细胞中唯一的核外遗传物质,线粒体DNA构象的变化可能通过影响线粒体功能而导致细胞命运的改变。目前
染色质的组成DNA的功能相关内容
DNA是一种具有多种功能的分子。它能够通过复制过程产生自己,细胞每分裂一次DNA便复制一次。它通过转录过程制造三种RNA:信使 RNA(mRNA),转移RNA(tRNA)和核糖体RNA(rRNA)。这三种RNA在细胞质合成蛋白质的一系列过程中行使不同的功能。信使RNA由DNA模板产生,是按一定顺
Caspase活化、核染色质固缩及DNA片段化
Life Technologies提供了用于细胞功能和健康检测的各种试剂。其中许多分析以荧光或比色法为基础,具有灵敏性、便利性和安全性。这些产品已经过多种仪器平台验证,包括显微镜、流式细胞仪、酶标仪和高内涵筛选,能够实现各种细胞功能的分析:细胞活性和细胞毒性细胞增殖和细胞周期细胞凋亡自噬氧化应激内吞
电离室的电离辐射介绍
电离辐射是一切能引起物质 电离的辐射总称,其种类很多,高速带电粒子有α粒子、 β粒子、 质子,不带电粒子有种子以及X 射线、γ射线。 α射线是一种带电粒子流,由于带电,它所到之处很容易引起 电离。 α射线有很强的 电离本领,这种性质既可利用。也带来一定破坏处,对人体内组织破坏能力较大。由于其质
医用电离辐射的防护(一)
在医学方面放射源广泛用于医学诊断、治疗和消毒灭菌。在农业方面用于辐照育种,可以改良品质,增加产量,还可用于灭菌保鲜等。在工业方面可用于石油、煤炭等资源勘探,矿石成份分析,工业探伤、无损检测、材料改性和料位、密度、厚度测量等。辐射检测仪放射源还可用于人造卫星供电,火灾烟雾报警,污水治理 。放疗就是放射
电离辐射在医学中有哪些应用
医学物理师和临床医生配合,工作在肿瘤放射治疗、医学影像、核医学以及其他非电离辐射,如超声、核磁、激光等各个领域,从事临床诊断和治疗的物理和技术支持、教学和科研工作,特别是在诊疗新技术的开发和应用。医学物理学是把物理学的原理和方法应用于人类疾病预防、诊断、治疗和保健的交叉学科。该学科以放射治疗、医学影
电离辐射的辐射危害有哪些?
1、辐射危害电离辐射能引起细胞化学平衡的改变,某些改变会引起癌变。电离辐射能引起体内 细胞中遗传物质DNA的损伤,这种影响甚至可能传到下一代,导致新生一代畸形, 先天白血病...在大量辐射的照射下,能在几小时或几天内引起病变,或是导致死亡 。2、照射危害电离辐射在人体组织内释放能量,导致细胞死亡或损
医用电离辐射的防护(二)
辐射防护的目的 Ø防止有害的定性效应(Deterministic effect ); 通过大量的动物实验和其它实验研究,再加上理论探讨,科学家发现有些有害的效应,在剂量愈大时,对人的损害愈严重。当剂量降低到一定水平后,即「剂量阈值」,这类效应就察觉不到, 如白内障,皮肤损伤,生育能力损害等。 Ø
物理因素引起的DNA损伤有哪些?
紫外线引起的DNA损伤DNA分子损伤最早就是从研究紫外线的效应开始的。当DNA受到最易被其吸收波长(~260nm)的紫外线照射时,主要是使同一条DNA链上相邻的嘧啶以共价键连成二聚体,相邻的两个T、或两个C、或C与T间都可以环丁基环(cyclobutane ring)连成二聚体,其中最容易形成的是T
DNA的化学检测项目介绍羊水细胞性染色质检查
羊水细胞性染色质检查介绍: 羊水细胞性染色质检查可以用于预测胎儿性别,以及估计某些遗传性疾病的可能发生概率。羊水细胞性染色质检查正常值: X染色质:>0.06为女性胎儿,0.05为男性胎儿,
电离辐射检测仪的相关介绍
1、个人剂量报警仪:主要用来监测X射线和γ射线,在测量范围内,可任意设定报警阈值,当达到报警阈值时,发出警报及时提醒工作人员注意安全。广泛应用于辐照加工企业、卫生防疫、放射治疗、核实验室、核电站、进出口商检、建材、石油化工、地质普查、废钢铁、工业无损探伤等存在电离辐射环境下。 2、中子剂量仪:
浙江大学黄俊教授Cell子刊发表最新成果
细胞基因组的完整性,持续受到多种内外因素的挑战,例如复制叉崩溃、氧化应激和电离辐射等等。并由此引发一系列细胞学反应。DNA的损伤类型很多,其中以DNA双链断裂(DSB)最为严重。DSB会随着年龄的增长不断累积。可以说我们的健康在很大程度上依赖于细胞发现和修复DNA损伤的能力。 DSB具有高度的
DNA修复机制的分子机理
当DNA双链发生断裂时,细胞启动DNA破坏反应(DNA-damage response, DDR)。DDR的一个重要方面是被破坏的DNA位点的信号的反馈和修复因子的聚集。这项研究表明,在高等的真核生物中,DDR机制中向双链破坏位点不断的积聚作用依赖于组蛋白变体(histone varia
科学家发现染色质结构调节DNA突变新机制
记者从中山大学获悉,由该校生命科学学院教授贺雄雷领衔的团队,近期在染色质结构如何调节DNA突变工作上取得重要进展,相关成果发表在3月9日的《科学》杂志上。这是近十年来中山大学首次以第一作者的身份在《科学》杂志上发表论文。 据研究人员介绍,突变是生物演化的基础,也是疾病发生的主要原因。人类
研究观测到染色质重塑中DNA的BZ构象转变
近年来,Z型DNA(Z-DNA)的研究引发关注,但是在细胞中对其进行观测还存在困难,主要原因是缺少一种简便可靠的手段对其进行直接观测。最近,中国科学院合肥物质科学研究院智能机械研究所研究员黄青课题组与郑州大学张凤秋课题组合作,利用红外光谱技术观测并研究染色质重塑中DNA的B-Z构象转变,相关研究
《自然》揭示DNA损伤应答过程中染色质松散新机制
4月16日,深圳大学医学部基础医学院、卡尔森国际肿瘤中心教授朱卫国团队在《自然》杂志在线发表最新研究。他们揭示了连接组蛋白H1脱酰胺化修饰促进染色质开放和DNA损伤修复的机制,为肿瘤放化疗的精准靶标设计夯实了理论基础,是肿瘤防治基础研究领域取得的突破性进展。 癌症现已成为世界范围内死亡的主要原
《自然》揭示DNA损伤应答过程中染色质松散新机制
4月16日,深圳大学医学部基础医学院、卡尔森国际肿瘤中心教授朱卫国团队在《自然》杂志在线发表最新研究。他们揭示了连接组蛋白H1脱酰胺化修饰促进染色质开放和DNA损伤修复的机制,为肿瘤放化疗的精准靶标设计夯实了理论基础,是肿瘤防治基础研究领域取得的突破性进展。 癌症现已成为世界范围内死亡的主要原
低水平电离辐射危害小于不良生活习惯
原文地址:http://news.sciencenet.cn/htmlnews/2017/9/388665.shtm新华社电 由于医疗等需要,人们在日常生活中会接触到不少低水平电离辐射,这是否会带来健康影响?英国一项新研究说,这方面的健康风险低于吸烟等不良生活习惯及空气污染等环境因素造成的健康危害。