研究发现基因调控水稻细胞死亡新机制
近日,中国水稻研究所(以下简称水稻所)种质创新课题组研究发现病斑突变体基因ELL1通过影响叶绿体的发育来调控水稻中活性氧的稳态,进而触发由活性氧介导的细胞死亡。该项研究丰富了对植物中细胞程序性死亡产生与活性氧稳态之间联系的理解。相关研究成果在线发表在《植物学报》上。 水稻所副研究员任德勇介绍,细胞程序性死亡在植物生长发育过程中普遍存在,是决定作物生长和发育的重要过程。在农业生产中,作物有规律的细胞程序性死亡有利于籽粒的发育和成熟,而不受控制的细胞程序性死亡会对作物的品质、产量带来巨大的影响。因此,探索植物细胞程序性死亡背后的分子机制是当前的研究热点,但关于调控其途径的基因报道仍相对较少。 病斑突变体常用作研究植物细胞程序性死亡分子机制的材料。该研究首先通过EMS诱变,克隆到一个病斑突变体基因ELL1。生理学和细胞学分析发现,该基因与叶绿体的发育和功能密切相关,与叶绿体相关的基因或蛋白在转录水平和蛋白水平上均受到严重影响;......阅读全文
中科院《细胞》杂志发表水稻研究新成果
来自中科院植物学研究所、中国农业科学院等研究机构的研究人员,在新研究中鉴别出了赋予粳稻耐冷性的一个数量性状基因座COLD1。这一研究成果在线发表在2月26日的《细胞》(Cell)杂志上。 中科院植物学研究所的种康(Kang Chong)研究员是这篇论文的通讯作者。其主要研究工作包括小麦开花和
研究发现基因调控水稻细胞死亡新机制
近日,中国水稻研究所(以下简称水稻所)种质创新课题组研究发现病斑突变体基因ELL1通过影响叶绿体的发育来调控水稻中活性氧的稳态,进而触发由活性氧介导的细胞死亡。该项研究丰富了对植物中细胞程序性死亡产生与活性氧稳态之间联系的理解。相关研究成果在线发表在《植物学报》上。 水稻所副研究员任德勇介绍,细
研究发现水稻调控细胞死亡及逆境胁迫因子
近日,中国农业大学教授彭友良、赵文生团队在《植物生物技术杂志》在线发表研究论文。该研究鉴定并分析了一个水稻自然叶枯突变体nbl3,揭示了一个PPR蛋白OsNBL3是调控水稻细胞死亡及生物和非生物胁迫的重要因子。 Pentatricopeptide repeat(PPR)蛋白是一类由核基因编码且多
科学家绘制水稻幼苗根叶单细胞转录图谱
中国科学院遗传与发育生物学研究所钱文峰研究组应用单细胞转录组测序技术,获得了水稻幼苗叶和根超过20万个单细胞的转录组信息,利用细胞类型标记基因和原位杂交技术,对每个细胞的身份进行了鉴定,构建了水稻幼苗叶和根的单细胞转录图谱。相关结果近日发表于《遗传学和基因组学期刊》。水稻幼苗叶和根的单细胞转录组
研究揭示细胞自噬调控水稻籽粒发育的分子机制
近日,华南农业大学农学院教授谢庆军团队研究揭示了细胞自噬通过降解THOUSAND-GRAIN WEIGHT 6(TGW6)蛋白调节水稻籽粒发育的分子机理,为水稻产量和品质的协同改良提供了新见解。相关成果在线发表于New Phytologist。 水稻细胞选择性自噬降解TGW6调节籽粒发育模式图
了解水稻胚乳细胞,为营养品质改良提供新思路
水稻是人类重要粮食来源,水稻的胚乳是其主要的营养物质。三倍体的水稻胚乳是由受精的极核发育而来。灌浆期的水稻胚乳由外向内依次包括糊粉层、亚糊粉层和淀粉胚乳三部分。成熟胚乳的糊粉层为活细胞,淀粉胚乳为死细胞,位于二者之间的亚糊粉层细胞作为一种过渡细胞类型在发育早期既累积淀粉也累积蛋白质,在胚乳发
科学家绘制水稻幼苗根叶单细胞转录图谱
水稻幼苗叶和根的单细胞转录组二维UMAP图与组织解剖图 图片来源:钱文峰等 中国科学院遗传与发育生物学研究所钱文峰研究组应用单细胞转录组测序技术,获得了水稻幼苗叶和根超过20万个单细胞的转录组信息,利用细胞类型标记基因和原位杂交技术,对每个细胞的身份进行了鉴定,构建了水稻幼苗叶和根的单细胞转录
基因簇调控水稻免疫和细胞死亡的分子机制
该研究利用基于代谢物的全基因关联分析在水稻9号染色体上鉴定到控制羟基肉桂酰腐胺代谢物合成的基因簇。该基因簇由一个鸟氨酸脱羧酶基因( OsODC )和两个串联的腐胺羟基肉桂酰转移酶基因(OsPHT3 和OsPHT4 )组成。功能分析表明,基因簇中三个基因均正调控水稻抗病性,并且 OsPHT3
耐盐碱水稻是人们口中常说的“海水稻”-非海水中生长水稻
我国著名水稻栽培专家凌启鸿执笔的《盐碱地种稻有关问题的讨论》一文,日前发表在《中国稻米》后,在学术界引起了强烈反响。 凌启鸿在该文中指出,我国已积累了丰富的盐碱地种稻经验,最基本的条件是引淡水灌溉洗盐,他认为目前水稻耐盐育种取得突破性的创新发展,但尚不能改变盐碱地种稻还必须靠淡水灌溉洗盐这
水稻OsSFL1基因可调控水稻开花期
近日,生物所谷晓峰课题组在表观遗传调控水稻开花期研究方面取得突破,发现了表观遗传关键调控因子OsSFL1具有介导组蛋白去乙酰化动态修饰的功能,进而调控水稻“适时”开花。相关研究成果发表在《植物生物技术杂志(Plant Biotechnology Journal)》。 人类超过80%的食物来
Science发布水稻研究重要成果:不怕洪水的水稻基因
到目前为止,植物已经进化成为可以适应各种恶劣环境。然而,虽然水对于植物的生存至关重要,但是大量的水会导致植物被淹没,特别是在东南亚地区,每年有长达4至5个月的时间的恶劣水淹环境,这对于农作物无疑是灭顶之灾。 近期来自日本东北大学,美国康奈尔大学等处的研究人员发表了题为“Ethylene-gib
研究发现调控细胞分裂素合成的水稻增产重要基因
原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505661.shtm7月27日,《自然—遗传学》杂志在线发表了华中农业大学教授邢永忠课题组(水稻产量生物学实验室)的研究论文。该研究挖掘到一个水稻的重要增产基因GY3,该基因通过调控细胞分裂素的合成,可显
上海交通大学-发现调控水稻颖壳细胞形态关键基因
上海交通大学农业与生物学院教授薛红卫课题组与中科院分子植物科学卓越创新中心合作研究鉴定了一个重要的微管调控蛋白OsIQD14,其通过影响微管动态变化进而调控颖壳细胞形态及种子形态。相关研究成果近日在线发表于《植物生物技术杂志》。 粒形在水稻产量和种子品质调控中具有重要作用。作为细胞骨架的重要
解读细胞分裂素如何精准调控水稻侧生分枝发育
rlb突变体表型 中国农科院水稻所供图RLB-EMF2b-OsCKX4模块调控水稻侧生分枝的分子机制 中国农科院水稻所供图 细胞分裂素(Cytokinin, CK)是调控植物侧生分枝发育的重要激素。在水稻中,Gn1a、LOG和CKX9等侧生分枝发育基因均与细胞分裂素代谢基因有关。植物如何通过细胞分
水稻杂交技术方法
水稻的杂交技术可分为调节开花期、选株、整穗、去雄、采粉、授粉和收获等步骤。 调节开花期。 水稻母本和父本花期的调整,可用分期播种的方法,使二者的花期相遇。 选株。 选株主要指选择母本植株而言。要选择具有本品种典型性状、生长健壮和没有病虫害的植株作母本。 整穗。
Affymetrix水稻芯片在水稻强弱势颖花异步灌浆分子机制...
Affymetrix水稻芯片在水稻强弱势颖花异步灌浆分子机制研究中的应用Guohui Zhu, Nenghui Ye, Jianchang Yang, Xinxiang Peng, and Jianhua ZhangRegulation of expression of starch synthes
水稻考种系统最简单快速的水稻考种方法
水稻考种是在水稻育种和新品种推广的过程中,不可避免的一项重要工作,过去采用人工考种的方式,效率极低,尤其是在数计每穗平均粒数,在样本多时,往往容易数错,且需要花费较长的时间,因此已经不能适应现代农业育种工作的需要。在此我们介绍一种最简单快速的水稻考种方法,那就是水稻考种系统,利用此系统开
Affymetrix水稻芯片在水稻强弱势颖花异步灌浆分子应用
稻穗籽粒灌浆过程不是同步的,一个圆锥花序中颖花开花迟早与灌浆速率和粒充实率密切相关。先开的颖花(强势颖花)灌浆速率和粒充实率高;后开的颖花(弱势颖花)灌浆速率低,甚至不结颖果,因此弱势颖花低的灌浆速率严重影响和限制了“超级”水稻产量。水稻灌浆过程实际上是一个淀粉积累的过程,受
水稻衰老调控分子机制被发现-可提高水稻产量
中科院遗传发育所植物基因组学国家重点实验室储成才研究组梁成真博士通过对一早衰突变体的研究,首次阐明了水稻叶片衰老的分子调控机制。这一发现可显著延缓水稻叶片衰老,延长灌浆时间,从而提高水稻的结实率和千粒重,最终使水稻产量得到显著提高。上述研究成果6月20日在线发表在《美国国家科学院院刊》上。 衰
水稻双重活性转录因子可调控细胞死亡和抗病性
近日,中国农业科学院植物保护研究所作物病原生物功能基因组研究创新团队首次报道植物bZIP类型转录因子APIP5具有结合DNA和RNA的双重活性,在转录和转录后水平调控水稻细胞死亡和防御反应的新机制。研究论文发表于Nucleic Acids Research(《核酸研究》)。 稻瘟菌侵染引起的稻
水稻细胞壁上与硅结合的有机配体是木葡聚糖
近日,华中农业大学资源与环境学院生物矿化课题组首次提出在水稻单细胞的细胞壁中,硅可以和半纤维素组分中的木葡聚糖共价交联形成有机硅复合物,进而改善细胞壁的力学性能和结构稳定性。相关研究成果发表在Carbohydrate Polymers上。 硅是地壳中含量第二丰富的元素,也是水稻生长的必需营养元
农科院生物所研究团队绘制水稻根组织单细胞图谱
近日,中国农业科学院生物技术研究所谷晓峰团队和合作者绘制了单子叶模式植物水稻首个根组织单细胞分辨率转录组图谱,为研究植物细胞类型特化、功能和进化提供了新的途径。相关结果发表在国际学术期刊《分子植物(Molecular Plant)》上。 在植物整个生命过程中,根尖在不断地分化发育,形成的根系从
土壤测试仪检测水稻土,促进水稻增产增收
南方多种植水稻,这与南方的气候环境分不开,一般南方较北方多阴雨,气候湿润,而北方较干旱,雨水少,就拿南方的6-7月来说,正是梅雨季节,南方雨水在这段时间特别多,而这个时间又是南方水稻生长的关键期,土壤水分,土壤温度都会随着大气温度、降雨的变化而变化,要想了解土壤环境可以选择托普云农的多种土壤测试仪,
从水稻中克隆出提高水稻抗旱抗盐能力的基因
近日,周口师范学院唐跃辉博士带领该校的河南省作物分子育种与生物反应器重点实验室植物逆境研究课题组,从水稻中克隆获得了响应干旱和盐胁迫的基因,该基因能够提高水稻抗旱抗盐的能力。该研究成果在线发表于国际知名期刊《植物科学前沿》。 据悉,中国占到全球盐渍化总面积的1/10,且呈现上升的趋势。近年来
浮夸风吹歪海水稻-与海水无关为啥取名“海水稻”
“网红”海水稻最近遇上了麻烦。 海水稻是袁隆平院士领衔的技术团队培育出的一种耐盐碱水稻,研发主阵地在青岛。今年,它已经开始了全国大范围试种。在去年的测产中,海水稻表现不错——一种编号为YC0045的水稻材料最高亩产量达到620.95公斤,超出预期的300公斤。 在习近平主席2018新
水稻剑叶夹角测量仪与水稻的超高产育种
水稻的优质高产一直以来是各国育种专家,乃至全世界各国人民的美好追求,而水稻剑叶夹角测量仪与水稻的超高产育种,乍听之下,好像不存在必然的联系,但是如果深入了解水稻剑叶夹角测量仪的作用之后,就会明白,水稻剑叶夹角测量仪的应用,对于水稻的超高产育种有着重要的指导意义。 目前水稻是世界上种植
“院士港”的海水稻
一粒稻谷,是一枚小舟,自七千年前,自河姆渡口,渐次苏醒,顺水漂流,泊入院士港。 院士港,是青岛国际院士港,坐落于李沧区。10月刚扯开金色大幕,我乘着高铁的激情和速度,追逐着这粒稻谷小小的身影,来到院士港。十六号楼,是青岛海水稻研究发展中心,中国工程院院士袁隆平是该研发中心主任和首席科学家,这儿
破解水稻高产优质“密码”
一粒种子可以改变世界,然而如何才能“多快好省”地培育出高产又优质的“黄金”种子? 中国科学院遗传与发育生物学研究所李家洋课题组、中国科学院上海生命科学研究院韩斌课题组和中国农业科学院水稻研究所钱前课题组经过了20多年的密切合作、协同创新,给出了答案——这粒种子可以在“水稻高产优质性状形成的分子
水稻叶片宽度这样调节
水稻正常植株与窄叶突变体nal21 中国农科院作科所供图水稻叶片宽度调控基因NAL21在不同部位的表达 中国农科院作科所供图 2月16日,《植物生理》(Plant Physiology)在线发表中国农业科学院作物科学研究所作物功能基因组研究创新团队揭示的水稻叶片宽度调节的新机制
农杆菌介导水稻转化
实验概要本实验介绍了农杆菌介导的水稻转化。主要试剂GUS染色液:100 mmol/L NaPO4 (pH7.0);0.1% Triton X-100;10 mmol/L EDTA;0.5 mmol/L亚铁氰化钾头抱霉素,乙醇,次氯酸钠溶液主要设备高速离心机,培养箱,人工气候室实验材料水稻种子实验步骤