微纳3D打印技术制造微流控芯片
微流控芯片是一门在微米尺度下研究流体的处理与操控的技术,微流控技术从最初的单一功能的流体控制器件发展到了现在的多功能集成、应用非常广泛的微流控芯片技术,在分析化学、医学诊断、细胞筛选、基因分析、药物输运等领域得到了广泛应用。相比于传统方法,微流控技术具有体积小、检测速度快、试剂用量小、成本低、多功能集成、通量高等特点。 传统用于制作微流控芯片的微加工技术大多继承自半导体工业,其加工过程工序繁多,且依赖于价格高昂的先进设备,加工过程都需要在超净间内完成,工序复杂。近年来,3D打印技术逐渐被应用于微流控芯片的制造。 采用微纳3D打印技术可以显著简化微流控芯片的加工过程,在打印材料的选择上也非常灵活,除了各种聚合物材料外,还可以直接打印生物材料。采用微纳3D打印技术制造微流控芯片较大地降低了微流控芯片的技术门槛和加工成本,对微流控芯片技术的推广应用有着非常积极的意义。 ......阅读全文
微纳3D打印技术制造微流控芯片
微流控芯片是一门在微米尺度下研究流体的处理与操控的技术,微流控技术从最初的单一功能的流体控制器件发展到了现在的多功能集成、应用非常广泛的微流控芯片技术,在分析化学、医学诊断、细胞筛选、基因分析、药物输运等领域得到了广泛应用。相比于传统方法,微流控技术具有体积小、检测速度快、试剂用量小、成本低、多
怎样快速制造基于3D打印的微流控芯片模块
微流控芯片作为集成化学、生物领域中的样片制备,检测分析及细胞培养等功能的平台,在当今的医学研究中具有广阔的发展前景。而目前基于传统技术的3D微流控芯片加工面临加工周期长,制造成本高,芯片功能结构单一的问题,如果能够在短时间内基于实验方案个体化定制3D微流控芯片,将会为生物医学研究,尤其是体外微环境构
微流控芯片技术将是微流控装置制造中的要点
在过去的几十年里,微流控技术在生物医学研究和临床应用中发挥了极大的优势。由于全球人口老龄化以及工业化国家医疗基础设施的增加,预计到2021年,微流控市场将达到87.8亿美元。微流控技术通过主动或被动力来处理少量流体,通常为微升和纳升来执行所需的测试。流程开发 开发可靠的微制造工艺,其可达到设计和性能
微流控芯片技术
微流控,是一种精确控制和操控微尺度流体,尤其特指亚微米结构的技术。通过在微尺度下流体的控制,在20世纪80年代,微流控技术开始兴起,并在DNA芯片,芯片实验室,微进样技术,微热力学技术等方向得到了发展。 微流控分析芯片最初在美国被称为"芯片实验室"(lab-on-a-chip),在欧洲被称为"
3D打印陶瓷微系统推进微流控芯片或人体器官芯片应用
芯片上的实验室-微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究
微流控芯片技术应用
按照技术原理,可暂将分子诊断技术大致划分为PCR技术、分子杂交、基因测序、核酸质谱、生物芯片(包括基因芯片、微流控芯片)5大类。今天就为大家分析介绍微流控技术的相关情况。在本文之前,小编已经陆续整理了一些相关文章,包括对分子诊断技术概况的介绍、NGS技术在病原微生物检测中的应用、数字PCR技术的优势
微流控芯片技术分类
在产业化中,微流控一般分为以下几大类型:压力推动式微流控、离心力推动式微流控、液滴微流控、数字化微流控、毛细力驱动微流控等。 压力推动式微流控主要利用气压或者液压来推动流体在芯片中的运动,在微流控产业化中出现的最多,像赛沛的GeneXpert、生物梅里埃的filmarray、罗氏诊断的coba
微流控芯片检测技术
微流控芯片检测器的性能要求检测是微流控芯片里相对特殊的一一个操作单元,它的基本功能是用于捕捉并放大微流控芯片某一部分产生的信号。与传统的仪器分析系统相比,微流控芯片分析系统对检测器有一些特殊的要求: 1.更高的灵敏度和信噪比 在微流控芯片分析过程中,被检测物质的进样体积小,检测区域也非常小,
微流控芯片
微流控是一种精确控制和操控微尺度流体,尤其特指亚微米结构的技术,是利用MEMS技术将一个大型实验室系统缩微在一个玻璃或塑料基板上,从而复制复杂的生物学和化学反应全过程,快速自动地完成实验。 微流控芯片有着强大的集成性,可以同时大量平行处理样品,具有灵敏度高、效率高、试剂消耗量低、环境污染小等特
微流控芯片制作方向与打印技术的特点
芯片制作技术的发展方向材料多样化制作方法的简单化降低制作成本提高制作速度 微流控芯片快速打印技术的优点无需模板,构型任意设计设备简单,对加工环境要求很低制作快速,简单成本低
微流控芯片表面改性技术
操作单元尺度在微米级的微流控芯片构件表面有三个明显的特点:1.表面积/体积比大。在微流控芯片中随着表面积与体积比的增大,表面效应显著,表面的重要性被强化,表面的微小变化就会对流体的行为产生大的影响。2.材料多元化。微流控芯片材质多样,增加了芯片表面的复杂性。不同的表面电渗不同,对不同分子的相互作用方
微流控芯片膜过滤技术
过滤技术的集成是微流控芯片研究的热点,从已有文献报道来看,微过滤器的形式多样,常见的有围堰式、栅栏式、阵列式及多孔膜式等。其中多孔膜结构为基础的膜过滤最具吸引力,与其他几类只能截留较大颗粒或者细胞的微过滤器相比,其优点是它可以实现分子水平的分离,具有更好的选择性。在微流控戏芯片上,多孔膜结构的引入可
简单介绍微流控芯片技术
微流控芯片技术是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 1、微流控芯片的加工方法 微流控芯
微流控技术的PCR生物微芯片技术原理!
基于数字流控(DMF)的聚合酶链式反应 (PCR)微芯片系统设计 ,主要在于对样品液滴的运动进行控制和对进行PCR所需要的温度控制 。设计了一种基于介电润湿 (Ew0D)原理的数字微流控PCR微芯片,并实现了对芯片不同区域的温度控制以满足PCR所需的要 求。基于数字微流控技术的PCR微芯片系统由
浅析微流控芯片的微流体控制技术
微流体操纵技术是微流控芯片技术中最重要的一个研究领域之一,通过各种机械或非机械力实现对流体的驱动和控制。依据微流体驱动体系中有无机械活动部件,可以将其分为机械和非机械驱动系统。 a、机械驱动系统 主要包括压电微泵、静电微泵等,它主要是通过静电、压电等不同方法来触发引起的机械部件的运动,从而为
微流控芯片原理
微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上, 自动完成分析全过程。 由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。
浅析微流控芯片
微流控芯片是一种把整个化验室的功能,包括采样、稀释、加试剂、反应、分离、检测等集成在微芯片上,且可以多次使用的装置。微流控芯片常以硅、玻璃、石英、热塑性塑料为材料。微流控芯片的基本概念 微流控芯片实验室,又称其为芯片实验室或微流控芯片技术,是把生物、化学、医学分析过程的样品制备、反应、分离、检
微流控芯片系统
微流控芯片又称芯片实验室,被公认是21世纪最重要的前沿科学技术之一。在与国际学术界几乎同期起步,缺少可借鉴先进技术和商业支撑的情况下,我所在微流控芯片细胞学研究、芯片检测仪和试剂盒研制方面开展了深入研究,并将其应用于以细胞生物学研究、疾病诊断和药物筛选为代表的生物医学领域。目前已构建了一系列具
微流控芯片应用
微流控芯片技术在水环境污染分析中的研究尚处于起步阶段,因此多集中于优先污染物的相关报道,主要包括重金属、营养元素、有机污染物和微生物等。 1、用肝水体中重金属检测的微流控芯片系统 随着工农业的发展, 越来越多的重金属如汞、铬、铅、铜、镍、钒等被排放入水体,不仅会对水生动植物产生毒害作用,还能通过
何谓微流控芯片?
微流控芯片是用于微流控研究的装置,其中的微通道已经被模塑或图案化。形成微流控芯片的微通道被连接起来以允许流体流过不同的通道,从一个地方流到另一个地方。这些微流道网络通过进口和出口连接到外部环境。通过被动方式或外部有源系统(压力控制器、注射泵或蠕动泵)从微流控芯片中注入、管理、移除液体或气体。通道可具
微流控芯片优势
1)高分析效率:在PCR检验领域,相比传统的PCR检验,现有的微流控芯片能够将诊断检测过程缩短至最低 10-15 分钟; 2)高精确度:硅制的确定性侧向位移微流控芯片比之前公认的最精密的芯片粒子分离技术的分离孔径要小50倍,意味着检测精度也将提高50倍; 3)集成化:采用微加工机技术,将所需
微流控芯片原理
微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上, 自动完成分析全过程。 由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。
微流控芯片中的微通道
以甲醇为工质,在不同进口温度、质量流率、热流密度和倾角下,对低高宽比矩形微通道中流动沸腾百压降特性进行了研究,并分别采用均相模型和分度相模型对通道压降进行了计算。通过对比实验结果与计算结果发现,均相模型中两相平均粘度的计算应当采用Dukler公式,用其他计算式时误差较大;利问用Lockhart
如何选择制造微流控芯片的正确材料
* 透明材料有利于光学观察/分析* 材料必须具有生物相容性,适用于生命科学应用* 大多数芯片需要表面处理以使其表面特性适应应用,并限制非特异性吸附自推出以来,微流控技术不断发展,并不断扩展其应用领域。生物和医学应用是当前微流控研究的主要领域。在材料和功能方面,虽然玻璃和硅具有重要用途,但是聚合物材料
解密微流控技术的PCR生物微芯片技术原理
基于数字流控(DMF)的聚合酶链式反应 (PCR)微芯片系统设计 ,主要在于对样品液滴的运动进行控制和对进行PCR所需要的温度控制 。设计了一种基于介电润湿 (Ew0D)原理的数字微流控PCR微芯片,并实现了对芯片不同区域的温度控制以满足PCR所需的要 求。基于数字微流控技术的PCR微芯
微流控分析芯片加工技术
微流控分析是以微管道为网络连接微泵、微阀、微储液器、微电极、微检测元件等具有光、电和流体输送功能的元器件,最大限度地把采样、稀释、加试剂、反应、分离、检测等分析功能集成在芯片上的微全分析系统。目前,微流控分析芯片的大小约几个平方厘米,微管道宽度和深度(高度)为微米和亚微米级。微流控分析芯片的加工技术
对微流控芯片技术的展望
微流控技术由微加工技术与三维培养相结合产生,在体外细胞培养中潜力较高。多器官微流控芯片技术可在微尺度对流体精准控制,模拟人体生理环境,克服了传统二维细胞培养模式与动物实验的不足,具有高度仿生性。MOC系统的发展结合了工程技术的优点,可调整流体流动和微通道中可控的局部组织-流体比率。MOC技术旨在建立
简述微流控芯片键合技术
微流控芯片实验室的成品率普遍较低,其中密封技术是微流控芯片制造过程的关键步骤,也是难点之一,封合不佳就会出现漏液,从而影响实验结果。玻璃等硬质材料常通过热键合和阳极键合技术实现密封,而节能省时的低温玻璃键合技术更受科研人员的青睐。此外,胶黏剂键合和表面改性键合以其便捷性和实用性的优势成为玻璃和聚合物
微流控芯片的技术优势
生命分析技术不断发展,在新的时代背景,又面临新挑战和发展机遇:要求在特别小的空间,特定的时间,特定的外界条件进行物质定性、定量、结构分析、形貌分析等工作。而微流控技术的出现为生命分析面临的三大特殊挑战提供了有力的操控工具。微流控技术具有如下特点:· 集成小型化与自动化: 通过流道的尺寸和曲度、微阀门
微流控芯片加工技术解析
微流控芯片的发展 微全分析系统的概念是在1990年首欠由瑞士Ciba2Geigy公司的Manz与Widmer提出的,当时主要强调了分析系统的“微”与“全”,及微管道网络的MEMS加工方法,而并未明确其外型特征。次年Manz等即在平板微芯片上实现了毛细管电泳与流动。微型全分析系统当前的发展前沿。