JIPTest检测丛枝菌根菌调节玉米PSII异质性免受高温胁迫...
JIP-Test检测丛枝菌根菌调节玉米PSII异质性免受高温胁迫的研究 基于生物膜中能量流动理论的快速叶绿素a荧光动力学OJIP曲线和JIP-test分析,具有无损、精确、快速的特点,如今已经广泛应用于植物逆境生理的研究。 OJIP曲线对各种环境的改变非常敏感,如光胁迫、化学物质、高温、寒冷、干旱、重金属或盐胁迫、营养不良、大气CO2或臭氧增加和病害等生长环境变化。 植物在遭受不同的逆境胁迫后,其OJIP曲线呈现不同的变化,而JIP-test分析则对OJIP曲线的变化提供定量分析。因此,OJIP曲线和JIP-test分析可以用于分析环境变化对植物光合生理过程的影响并用于筛选抗逆品种。 2020年1月,Industrial C......阅读全文
JIPTest检测丛枝菌根菌调节玉米PSII异质性免受高温胁迫...
JIP-Test检测丛枝菌根菌调节玉米PSII异质性免受高温胁迫的研究 基于生物膜中能量流动理论的快速叶绿素a荧光动力学OJIP曲线和JIP-test分析,具有无损、精确、快速的特点,如今已经广泛应用于植物逆境生理的研究。 OJIP曲线对各种环境的改变非常敏感,如光胁迫、化
丛枝菌根共生“自我调节”研究进展
近期,中国科学院分子植物科学卓越创新中心王二涛研究组揭示植物磷信号网络控制菌根共生的分子机制,相关成果以A Phosphate Starvation Response (PHR)-centered network regulates mycorrhizal symbiosis为题,作为封面论文于
东北地理所丛枝菌根对玉米生长影响研究取得系列进展
大多数陆生植物(70% -90%)能与丛枝菌根(arbuscular mycorrhiza, AM)真菌形成共生关系。研究表明,AM真菌能够提高宿主植物的抗逆性。近年来,一些研究者相继报道了逆境胁迫下AM真菌对植物生长发育、营养吸收与转运、水分状况等影响的研究。 近期,中科院
分子植物中心在丛枝菌根共生“自我调节”研究中取得进展
近期,中国科学院分子植物科学卓越创新中心王二涛研究组揭示植物磷信号网络控制菌根共生的分子机制,相关成果以A Phosphate Starvation Response (PHR)-centered network regulates mycorrhizal symbiosis为题,作为封面论文于
丛枝菌根真菌调控氮代谢增强植物耐旱机制
华南农业大学林学与风景园林学院教授唐明团队同合作者,研究揭示了丛枝菌根真菌异形根孢囊霉通过调控菌根氮转运途径关键基因RiCPSI和RiCARI,增强宿主植物养分供给和抗氧化作用,提高耐旱性的分子机制。相关成果近日发表于《植物生理》(Plant Physiology)。论文第一作者、华南农业大学林学与
将耐旱共生菌引入农田生态系统有助作物抗旱
近期,中科院微生物研究所研究员高程与加州大学伯克利分校教授John W. Taylor团队合作,发现干旱胁迫并未改变丛枝菌根真菌群落组成。结合前期干旱导致丛枝菌根真菌生物量下降的发现,得出农田长期灌溉造成耐旱丛枝菌根真菌丧失的结论。相关研究发表于《分子生态学》。 物种必须在有限资源的分配上进行
生态中心在丛枝菌根提高植物抗旱性分子机制方面取得进展
最近,中国科学院生态环境研究中心城市与区域生态国家重点实验室陈保冬研究组在丛枝菌根提高宿主植物抗旱性分子机制研究方面取得重要进展,相关研究结果在国际著名植物学期刊《新植物学家》上发表(New Phytologist 197: 617-630;2013)。 丛枝菌根(arbuscular
OJIP曲线和JIPtest在植物干旱胁迫研究中的应用(一)
1 总述干旱胁迫对植物光合效率产生负面影响,干扰气孔功能,影响同化物质的积累和运输[1,2,3,4,5]。植物受到干旱胁迫会激活各种机制避免缺水造成的负面影响[6,7]。缺水限制了植物碳代谢和光反应产物的利用,使得大量吸收的光能不能被转化为化学能,从而导致PSⅡ受到破坏[3,8,9,10]。此外水分
新研究揭示菌根真菌提高植物抗逆性
近日,华南农业大学林学与风景园林学院、岭南现代农业科学与技术广东省实验室教授唐明/陈辉团队分别在Microbiology Spectrum和Industrial Crops and Products发表了菌根真菌提高植物抗逆性研究论文。 干旱胁迫导致植物生长发育受到抑制,是影响农林业生产的主要
丛枝菌根共生中参与碳分配的蔗糖转运蛋白获揭示
原文地址:http://news.sciencenet.cn/htmlnews/2023/12/513912.shtm
丛枝菌根真菌调控不同功能群植物种间关系获进展
原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512416.shtm作为土壤中广泛存在的一类关键有益微生物,丛枝菌根真菌(AMF)可与80%以上的陆生植物建立共生关系,协助宿主植物吸收土壤养分,同时促进相邻植物之间的资源合作,提高植物群落生产力和多样
中澳合作研究发现丛枝菌根真菌调控寄生植物生长
中科院昆明植物研究所与澳大利亚阿德莱德大学的科研人员合作,首次证实了丛枝菌根真菌对根寄生植物养分吸收器官的发生有直接显著的影响。相关成果近日发表在国际期刊《植物学纪事》上。 寄生植物和丛枝菌根(AM)真菌在陆地生态系统中广泛分布,两者均为陆地生态系统的重要组成部分。国内外关于这两类生物
中科院上海植生所《Plant-Cell》发表菌根共生新成果
近日,知名期刊《Plant Cell》刊登了中科院上海生命科学研究院植物生理生态研究所、英国John Innes中心和约克大学等处关于菌根共生的最新研究成果“A H+-ATPase That Energizes Nutrient Uptake during Mycorrhizal Sym
共接种微生物助玉米抗旱,应对全球干旱
原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517363.shtm近日,甘肃省科学院生物研究所祝英研究员与兰州大学生态学院教授熊友才团队在微生物共接种增强玉米抗旱性机制研究领域取得新进展,揭示了微生物共接种增强玉米抗旱性机制,相关研究成果论文在《总体
质子流(H+)作为丛枝菌根(AM)真菌芽管菌丝发育的标签
2008年4月,Feijá等科学家使用“非损伤微测技术(the ion-selective vibrating probe system)”研究了芽管菌丝发育时期菌丝中的H+流,发现胞外的pH在宿主和真菌间的离子交换和AM真菌生长中起到重要作用,菌丝的H+流振荡与芽管菌丝的生长存在相互关系,
地上地下搭起“通讯网”-植物间交流无处不在
原文地址:http://news.sciencenet.cn/htmlnews/2023/4/498730.shtm 自然界中,植物并不是孤立存在的,而是经常与其他生物产生形式各异的互动。植物间通过地上和地下部分产生的挥发物以及利用根际分泌物进行交流互作,对此,科学家已进行了深入研究。 日前
研究发现协调氮素吸收直接和间接途径的新机制
2月19日,南京农业大学教授徐国华、陈爱群团队在《美国科学院院刊》(PNAS)上发表了最新研究论文,首次系统阐明了两个转录因子OsNLP3和OsPHR2协同调控硝酸盐转运蛋白复合体NAR2.1-NRT2s介导的氮素吸收直接途径和菌根途径的分子机制。这一突破性发现首次阐明了协调氮素吸收的直接途径和菌根
JIPtest和主成分分析(PCA)在植物光合作用研究中的应用3
图4c. 数据点降维的信息损失与矫正:X/Y轴矫正最好的结果应该是我们依然选择了某个直线,并把点投影到这条直线上,但是点之间没有重合,点与点的间隔也比较远。看到这里,我们就知道PCA到底要做什么了,没错,就是找到这条直线,并求出投影到这条直线的点的坐标(当然二维降一维是直线,三维降二维就是平面了,更
新生物氮肥促粮食作物产量提高10%
3月27日,浙江师范大学化学与生命科学学院金海如教授表示,利用丛枝菌根真菌生产高效生物氮肥的技术目前已经进行推广试验,“在我们的田地试验中发现,这种生物氮肥可以促进提高大豆、高粱和玉米等粮食作物产量10%以上,若全国推广使用,不仅可以减少化学肥料的使用,而且可以增产几千万吨粮食,产生几百亿元的经
陆生植物和丛枝菌根真菌一种古老而广泛的营养共生关系
陆生植物和丛枝菌根 (AM) 真菌形成了一种古老而广泛的营养共生关系。植物真菌在根际相互识别后通常是菌丝进入植物根部,随后在胞内丛枝中促进营养物质的双向交换。根皮层细胞质膜延伸包围丛枝形成的丛枝周膜(PAM),为植物与真菌交流创造了一个潜在的枢纽。类受体激酶(Receptor-like kina
有效利用真菌可降低作物化肥需求
根据美国南达科他州立大学生物学与微生物学教授Heike Bücking的最新研究成果,植物与真菌之间存在着一种古老的互利关系,这种关系可以帮助作物减少对化肥的需求,从而促进农业的可持续发展。 Bücking解释说,5亿多年来,大多数陆生植物都通过根部系统和丛枝菌根真菌共享碳水化合物。作为交换,
亚高山次生演替土壤铁、锰动态变化机制被揭示
中国科学院成都生物研究所退化土壤生态功能恢复创新团队博士研究生李瑞轩在研究员庞学勇指导下,以青藏高原东缘亚高山典型次生演替序列(草地→灌丛→次生林→原始林)为研究对象,结合微生物群落、方差分解和冗余分析等,系统探究了演替过程中土壤铁(Fe)、锰(Mn)形态(Fe2?, Fe3?, Fe氧化物;M
分子植物卓越中心揭示菌根共生营养交换的“刹车”调控机制
9月16日,中国科学院分子植物科学卓越创新中心王二涛研究组与华东师范大学生命科学学院姜伊娜研究组合作,在《自然-通讯》(Nature Communications)上,在线发表了题为Control of arbuscule development by a transcriptional neg
高通量测序技术在破译亚热带森林生物多样性维持“密码..
高通量测序技术在破译亚热带森林生物多样性维持“密码”的应用森林生物多样性有着怎样的维持机制?来自中国科学院植物研究所的马克平研究团队首次结合亚热带森林幼苗更新动态监测数据、高通量测序技术和邻居效应模型,揭示了不同功能型土壤真菌驱动亚热带森林群落多样性的作用方式,提出了外生菌根真菌与病原真菌互作过程影
全球尺度下不同菌根类型木本植物抗旱性差异获揭示
中国科学院华南植物园生态中心植物生理生态研究组博士后刘小容等研究人员,在国家自然科学基金和广东省重点实验室项目的资助下,研究揭示了全球尺度下不同菌根类型木本植物抗旱性的差异。相关成果近日在线发表于《新植物学家》(New Phytologist)。丛枝菌根和外生菌根树种具有显著不同的养分吸收和利用策略
真菌相互作用促进质子释放
大多数豆科植物与真菌共生。丛枝菌根真菌(AM)对磷(P)的吸收和根瘤菌对氮(N2)的固定具有重要的农学和生态学意义。植物-AM真菌-根瘤菌三个共生如何高效吸收营养的机制受到很多关注。AM真菌和根瘤菌能够有效地增加固氮和植物对土壤中磷的吸收,但这破坏了根部阴阳离子平衡,过多的阳离子需要从根部分泌出
中科院Plant-Cell揭示植物菌根共生能量来源
4月30日,国际学术期刊The Plant Cell在线发表了中国科学院上海生命科学研究院植物生理生态研究所王二涛研究组关于菌根共生的最新研究成果A H+-ATPase that Energizes Nutrient Uptake during Mycorrhizal Symbioses in
水稻中稳定表达嵌合受体-显著提高识别能力
丛枝菌根是陆生植物与丛枝菌根真菌之间形成的一种互利互惠的共生,帮助植物高效从土壤中获取磷、氮等营养,同时宿主植物主要以脂肪酸的形式把碳源传递给菌根真菌,向生态系统输入碳源(Science, 2017; Molecular Plant, 2017; The Plant Cell, 2014)。共
植物如何实现免疫调控?中国科学家阐释“平衡之道”
5月15日,中国科学院分子植物科学卓越创新中心(以下简称分子植物卓越中心)研究员王二涛团队、张余团队以及何祖华团队在水稻免疫机制研究上取得了重大突破,并发现了植物蛋白泛素化的新机制。相关研究发表于《自然》。“这是一个非常有分子植物卓越中心特色的工作。”中国科学院院士何祖华强调,“一方面,我们开展的基
菌根共生提高酸枣抗盐的秘密获破解
黄河滩地冬枣枣园土壤次生盐碱化状况。 盐胁迫下菌根化枣树的适应机制。 图片均由论文作者提供 在逆境条件下,植物通常会在根际招募微生物来提高自身的适应能力。丛枝菌根真菌就是这样一种土壤微生物,它们与根系共生促进植物生长发育。 枣树是原产我国的重要的经济林树种,栽培面积达200万公顷。