基于智能手机的近红外成像、测量和光谱技术在护理点
浙江大学张晟等:基于智能手机的近红外成像、测量和光谱技术在护理点诊断中的应用 中文摘要: 概要:护理点(POC)诊断在公共卫生中起到非常重要的作用。在智能手机的支持下,POC诊断技术得到极大的改进。不仅仅是因为手机在世界范围内的大量使用,而且还得益于其日益增强的成像/拍照功能。智能手机结合近红外成像、测量和光谱技术,可以高灵敏度地检测病原体。整个过程快速、准确、成本低廉,将成为POC诊断的未来趋势。本文综述了基于智能手机的近红外荧光成像技术的发展,并对其应用和潜力进行了讨论。 关键词组: 护理点(POC)诊断;近红外成像;光谱技术;病毒检测;智能手机;荧光成像 作者: Wenjing HUANG, Shenglin LUO, Dong YANG, Sheng ZHANG 本文引用格式: Wenjing HUANG, Shenglin LUO, Dong YANG, Sheng ZHANG, 2021. App......阅读全文
基于智能手机的近红外成像、测量和光谱技术在护理点
浙江大学张晟等:基于智能手机的近红外成像、测量和光谱技术在护理点诊断中的应用 中文摘要: 概要:护理点(POC)诊断在公共卫生中起到非常重要的作用。在智能手机的支持下,POC诊断技术得到极大的改进。不仅仅是因为手机在世界范围内的大量使用,而且还得益于其日益增强的成像/拍照功能。智能手机结合近
红外成像技术原理
1.什么是红外线?在自然界中,凡是温度大于绝对零度dao(-273℃)的物体都能辐射红外线,它和可见光、紫外线、X射线、伽玛线、宇宙线和无线电波一起,构成了一个完整连续的电磁波谱。其波长在0.78μm至1000μm之间,是比红光波长长的非可见光。红外线2. 红外热像仪工作原理红外热像仪是将红外热辐射
成像光谱方法技术
一方面,高光谱分辨率的成像光谱遥感技术是对多光谱遥感技术的继承、发展和创新,因此,绝大部分多光谱遥感数据处理分析方法,仍然可用于高光谱数据;另一方面,成像光谱技术具有与多光谱技术不一样的技术特点,即高光谱分辨率、超多波段(波段<1000,通常为100~200个左右)和甚高光谱(Ultra Spect
红外光谱技术
这些年来医学有了很大的发展,越来越多的不治之症变得有可能。随着人类社会的不断发展,人们对于健康有了很大的关注,其中药用安全也是人们常常谈到的话题。对于咱们中国人来说,中医是我们特有的医疗方式。目前,“指纹图谱”被作为中药现代化的一个代表,炒作得热闹非常。内行人都知道,色谱、光谱、波谱这三种方法均可用
什么叫凝视红外成像技术
简单的说就是成像机制不一样。凝视型,光敏器件一次一幅图成像。扫描型,一次一行,然后拼接成一幅图
成像光谱技术是什么?
1.成像光谱技术发展简述 光谱技术是指利用光与物质的相互作用研究分子结构及动态特性的学科,即通过获取光的发射、吸收与散射信息可获得与样品相关的化学信息,成像技术则是获取目标的影像信息,研究目标的空间特性信息。这两个独立的学科在各自的领域里已有数百年的发展历史,但是知道上个世纪六十年代,遥
超光谱成像技术
超光谱成像技术是在多光谱成像技术基础上发展起来的新技术。它是一种集光学、光谱学、精密机械、电子技术及计算机技术于一体的新型遥感技术,能获得空间维和光谱维的丰富信息,属于当前可见红外遥感器的前沿科学。由其物化的成像光谱仪,根据光谱分辨率(光学遥感器的性能指标之一,是指遥感器在接收目标辐射的光谱时,
山东大学开发量子点红外高光谱成像技术-可实现更高效的高光谱成像
近红外(NIR)高光谱成像是一种极具前景的检测技术,能够捕捉详细的3D光谱空间信息,使得基于光谱特征的材料和目标的识别和表征成为可能。该技术依赖于色散光学和窄带滤光片等策略,在化学、农业和军事等领域得到广泛应用。 然而,这些方法都存在局限性。此外,大规模InGaAs探测器阵列的制造也带来了挑战
显微红外光谱及成像技术在抑癌基因研究方面获进展
近期,技术生物所黄青研究员课题组在利用生物光谱技术研究与p53相关的细胞辐射效应方面取得新进展,相关研究结果以FTIR Micro-spectroscopy Probes Particle-Radiation Effect on HCT116 cells (p53+/+, p53-/-)为题发表
红外成像仪的技术应用
GOEZ-C3是一种结构紧凑的热像仪可以大幅度降低夜间驾驶的危险性。它能使驾驶员看得更远而清晰度比使用标准前灯时更高。驾驶员能够探测和监控道路上和道路附近的行人、动物或物体,有更多时间对任何潜在危险做出反应。热成像是一种使驾驶员视觉增强的有效系统, 其视距是前灯的5倍,能明显降低夜间驾驶风险。它
红外成像仪的技术应用
GOEZ-C3是一种结构紧凑的热像仪可以大幅度降低夜间驾驶的危险性。它能使驾驶员看得更远而清晰度比使用标准前灯时更高。驾驶员能够探测和监控道路上和道路附近的行人、动物或物体,有更多时间对任何潜在危险做出反应。热成像是一种使驾驶员视觉增强的有效系统, 其视距是前灯的5倍,能明显降低夜间驾驶风险。它
红外热成像诊断技术的应用
是依靠被动接受人体散发出来的红外热能成像。红外热成像诊断技术采用先进的热敏感光学成像技术,接受人体发出的红外热能,经过专用计算机存储处理后,产生清晰精确的热像彩色图谱。其基本功能:热监视、热诊断、热测定、热研究。红外热像诊断技术对人体无射线伤害,对环境无辐射污染。可真实动态观察人体组织机构的功能
红外光谱实验技术
红外光谱实验技术一. 实验目的1. 掌握固体和液体样品的常规制样方法2. 了解傅里叶变换红外光谱仪的工作原理和使用方法3. 了解ATR光谱附件的工作原理并掌握其使用方法 二. 实验内容1.固体样品的制备方法:压片法将固体样品与金属卤化物(KBr)按适当比例混合,于玛瑙研钵中快速研磨成极细的粉末(~2
FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像...
FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像是什么1. 多光谱荧光的发现及特性二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧
关于近红外高光谱成像光谱仪的简介
近红外高光谱成像光谱仪是一种用于物理学领域的分析仪器,于2012年12月31日启用。 一、近红外高光谱成像光谱仪的技术指标:狭缝尺寸:30微米; 成像分辨率:3.64纳米; 光谱范围:900-1700纳米; 数值孔径:2。 二、近红外高光谱成像光谱仪的主要功能:光谱仪核心部分包括均匀光源、光
近红外及中红外光谱法测量原理
关于红外分光的原理,先从zui基本的中红外领域的吸收讲述。 某物质照射中红外光后,中红外光一部分被该物质吸收。被吸收的中红外光的波长和吸收程度(吸光度或透射率)由该物质决定。因此测量中红外吸收光谱可以得知物质固有光谱。 振动频率ν的光被分子吸收后,分子的能量只增加E=hν(h为普朗克定数
什么会影响红外成像仪的测量精度
由于红外温度测量技术已广泛应用于工业和其他领域,因此还需要更高的测量精度。非接触式红外测温仪在功能和技术上日趋完善,但仍有一些因素影响其精度。那么,哪些因素会影响红外成像仪的测量精度?测量角度为了确保精确的测量,在测量时(与目标表面垂直),红外测温仪应尽可能遵循被测物的表面法线方向。如果不能保证仪器
分子染料指导近红外光谱断层成像技术精确切除乳腺肿瘤
分析测试百科网讯 在乳腺癌等癌症的临床治疗中,肿瘤的精确定位一直是让医生头痛的问题。外科医生通常根据临床经验对肿瘤组织进行切除,但是少切会造成复发,多切又会对患者造成伤害。因此,如果有一种能在手术中标记肿瘤边界的方法将具有重要的临床应用价值。 分子染料,比较常见的如食用色素,已经被用于指导近红
近红外光谱法测量酸值
近红外光谱法Chen Man等用0.15%(w/w)酯酶于印℃恒温水浴下酶解天然棕榈油,配制成不同游离脂肪酸浓度梯度的棕榈油,利用近红外光谱扫描,由多元线性回归创建校正模型,即可得出棕榈油中游离脂肪酸含量此法测定速度较快,总分析时间为5min,环境温和 。Ahmed A1一Alawi等开发了一种傅里
红外光谱的测量极限在哪里?
Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒级时间分辨超灵敏红外光谱仪在探寻红外光谱测量极限上展现了独特的魅力,先后获得科学仪器“优秀新品奖”。 近年来,在多领域大发展及各类新技术不断进步的形势下,传统的红外光谱
关于近红外高光谱成像地物光谱仪的简介
近红外高光谱成像地物光谱仪是一种用于林学领域的电子测量仪器,于2017年4月10日启用。 一、近红外高光谱成像地物光谱仪的技术指标: 近红外高光谱成像光谱仪主机:HyperspecNIR1003A-10168;900-1700nm消色差镜头;HyperspecIIIforNIR:E51111
高光谱成像仪的成像技术原理
高光谱成像仪是新一代传感器。在20世纪80年代初正式开始研制。研制这类仪器的主要目的是想在获取大量地物目标窄波段连续光谱图像的同时,获得每个像元几乎连续的光谱数据,因而称为成像光谱仪。目前成像光谱仪主要应用于高光谱航空遥感。在航天遥感领域高光谱也开始应用。 高光谱成像技术 高光谱成像技术是基
高光谱成像仪的成像技术原理
高光谱成像仪是新一代传感器。在20世纪80年代初正式开始研制。研制这类仪器的主要目的是想在获取大量地物目标窄波段连续光谱图像的同时,获得每个像元几乎连续的光谱数据,因而称为成像光谱仪。目前成像光谱仪主要应用于高光谱航空遥感。在航天遥感领域高光谱也开始应用。 高光谱成像技术 高光谱成像
红外光谱制样技术
红外光谱仪已经成为了目前实验室的重要分析仪器之一,每年分析的样品也数不胜数。 这些样品范围从商业产品像高聚物颗粒和液体表面活性剂,一直到高纯度有机化合物。而为了从这些不同的材料中得到高质量的红外谱图,制样技术也不尽相同。这里小编就红外光谱仪的制样和大家做个简单的讨论。 液体 液样的制
红外光谱制样技术
红外光谱的样品制备 – *部分 每年各地红外光谱的实验室制备和利用红外光谱仪分析成千上万个样品。 这些样品范围从商业产品像高聚物颗粒和液体表面活性剂,一直到高纯度有机化合物。为了从这些不同的材料中得到高质量的红外谱图,我们必须采用多种多样的制样技术。这篇文章的旨在与您交流红外制样技术。在这篇文
植物多光谱荧光成像系统多激发光、多光谱荧光成像技术
多激发光、多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光)到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、滤波轮及相应
实验室光谱仪器红外显微成像技术的基本原理
FTIR显微成像技术是对一个选定区域(几十微米到数十毫米)的每一个点(像素)进行红外光谱测定,然后用计算机技术将这些点的红外光谱按区域进行二维或三维图谱绘制。该成像技术依赖于三方面:①扫描:②空间编码和解码:③红外显微镜及多通道检测器。当进行红外成像时,首先根据不同检测目的选择相应的检测器,并选择感
光谱成像技术及其应用(一)
高光谱成像叶绿素荧光成像红外热成像一、Specim高光谱成像技术芬兰Specim公司,国际高光谱成像技术的领导者,其产品技术涵盖可见光-近红外(VNIR)、短波红外(SWIR)、中波红外(MWIR)及长波红外LWIR高光谱成像,广泛应用于植物/作物科学、农业科学、中药学、地质地球科学、生态与环境科学
FluorCam多光谱荧光成像技术介绍
FluorCam多光谱荧光成像系统作为FluorCam叶绿素荧光成像系统的最高级型号,是目前唯一有能力实现了一台仪器上同时完成叶绿素荧光、UV-MCF多光谱荧光、NDVI归一化植被指数以及GFP、YFP、BFP、RFP、CFP、DAPI等荧光蛋白与荧光染料的成像分析功能。同时也可以加装RGB真彩成像
光谱成像技术及其应用(二)
功能特点:1) 拥有GigE Vision和CameraLink两种接口选择,配置软件开发包,满足用户的多样化需求2) 线阵推扫成像方式,在具有高速成像的同时,同一时间获得目标区域的所有光谱信息数据,保证每一个空间像素的光谱纯洁度,为客户提供更加真实准确的高光谱数据3) 采用高透光率的光学设计(F/