NanoResearch|嵌段共聚物稳定的卤化铅钙钛矿纳米线

基于卤化铅钙钛矿(LHPs)的太阳能电池的迅速发展,促使其他密切相关领域的研究十分活跃。这种材料的胶体纳米结构显示出优越的光电性能。特别是一维LHPs纳米线在高度定向时表现出各向异性的光学特性。然而,由于它们的离子特性,对外界环境非常敏感,限制了它们的大规模实际应用。加州大学伯克利分校A. Paul Alivisatos、杨培东教授等人介绍了一种两亲性嵌段共聚物聚苯乙烯-嵌段-聚(4-乙烯基吡啶)(PS-P4VP)对胶体CsPbBr3纳米线的表面进行化学修饰。所制备的核壳纳米线具有增强的光致发光性能和良好的抗水胶体稳定性。利用稳定性增强的优势,进一步应用改进的Langmuir-Blodgett技术组装了高排列纳米线单层膜,并研究了其各向异性光学特性。相关研究以“Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodge......阅读全文

EDS检测纳米线黑森林

纳米线黑森林 来看看GaAs/GaInP纳米线形成的黑森林SEM照片。纳米线分两步长成:树干GaAs通过金属有机物气相外延法(MOVPE)使用金颗粒作为种子。取出反应容器中的样品,并在样品表面喷一层HSQ抗蚀剂。第二步MOVPE 制备GaInP时,抗蚀剂可以阻止GaInP在GaAs上生长。图

用作气体传感的纳米线

用作气体传感的纳米线 一篇具有启发性的文章(X. Chen et al., Sensors and Actuators B: Chemical, 177 (2013): 178-195. )详细描述了基于纳米线的气体传感器的制造流程,配置,工作原理。它们通常具有高灵敏度和响应时间迅速、高选择性和高稳

人类细胞竟能“吞噬”纳米线

  硅纳米线和人类细胞同处一“室”,竟被细胞“吞噬”!据美国电气与电子工程师协会《光谱》杂志网站近日报道,美国芝加哥大学研究人员将人体内皮细胞与硅纳米线放在同一个培养皿中,利用电子显微镜和特制光学成像工具,首次视频呈现“吞噬”细节。这项发表在《科学进展》杂志上的新研究,能帮助开发出突破人体屏障的给药

日本成功开发磁性纳米线

   据《日刊工业新闻》7月3日报道,日本大阪大学大学院理学研究科附属强磁场科学研究中心的萩原政幸教授和日本首都大学东京大学院理工学研究科的真庭豊教授共同研究,在单层碳纳米管内充填氧分子,成功开发了可成为纳米结构新型磁性体的纳米线。磁性体纳米线作为自旋电子材料可用于信息传输和控制等领域。   共同研

巴斯夫收购Seashell公司纳米线技术

  近日,巴斯夫与总部位于加利福尼亚州圣地亚哥的顶尖纳米科技公司Seashell共同宣布,巴斯夫已购买Seashell有关银纳米线的技术及其专利知识。此次收购拓展了正在成长中的巴斯夫电子材料部门为显示器行业提供的解决方案组合。   “Seashell是银纳米线技术的先驱之一,促进了多个应用领域的发展

硅纳米线的主要成分

Si纳米线当然成分就是Si了,要是SiO2不就是SiO2纳米线了?不过Si确实不稳定,极易氧化,表面一定会有SiO2层的。

微系统所研制出微纳光纤耦合超导纳米线单光子探测器

  超导纳米线单光子探测器(SNSPD:Superconducting nanowire single-photon detector)作为一种高性能的单光子探测器,已广泛应用于量子信息、激光雷达、深空通信等领域,有力推动了相关领域的科技发展。  SNSPD器件主要有两种光耦合方式,一种是垂直光耦合

DNA纳米线中首次检测到电流

  据德国赫姆霍兹研究中心官网9日报道,该中心德累斯顿罗森多夫实验室和帕德博恩大学研究人员在开发遗传物质电路方面取得突破:他们通过加入镀金纳米粒子,首次在单链DNA自组装纳米线中检测到电流。相关研究发表在科学期刊《朗缪尔》(Langmuir)上。  近年来,计算机芯片重要元件已缩小至14纳米,但传统

单根纳米线聚光强度极高

  一个来自丹麦和瑞士的联合研究团队已经证明,单根纳米线可聚集的太阳光强度能达到普通光照强度的15倍,这一令人惊讶的研究成果在开发以纳米线为基础的新型高效太阳能电池方面潜力巨大,有可能使太阳能转换极限得以提高。相关论文发表在《自然·光子学》杂志上。   纳米线的结构为圆柱状,直径约为人类发丝的万分

DNA纳米线中首次检测到电流

  加入镀金纳米颗粒的DNA纳米线成功传导电流,向生产基于遗传物质的电路和计算机迈出一大步。  据德国赫姆霍兹研究中心官网9日报道,该中心德累斯顿罗森多夫实验室和帕德博恩大学研究人员在开发遗传物质电路方面取得突破:他们通过加入镀金纳米粒子,首次在单链DNA自组装纳米线中检测到电流。相关研究发表在科学

最细的纳米线可达原子厚度

  你所能想象到的最细的线缆有多细?答案是一个原子!最近,英国剑桥大学和华威大学的研究人员成功将线缆缩小到了一串单一的原子(碲原子),制备出了真正的一维材料。为使碲原子稳定存在,研究人员将其固定在碳纳米管中,并且他们还发现,通过改变纳米管的直径,可以控制碲的其他性质。这项研究可能会使我们将来随身携带

纳米线晶体管能自我修复

  据美国电气与电子工程师协会《光谱》杂志网站11日报道,美国国家航空航天局(NASA)与韩国科学技术研究院(KAIST)合作,研制出了一款能自我修复的晶体管。研究人员表示,最新自我修复技术有助于研制单芯片飞船,其能以五分之一光速飞行,在20年内抵达距太阳系最近的恒星“比邻星”。   今年4月12日

美利用银纳米线开发出弹性导体

  据物理学家组织网近日报道,美国北卡罗来纳州立大学的研究人员采用银纳米线开发出具有高导电性和弹性的导体,有望制成可伸缩变形的电子设备。   可伸缩的电路将能够胜任很多刚性设备不可为的事情。例如,电子化“皮肤”可以帮助机器人拿起一些细微的物体,伸缩的显示器和天线可以使手机和其他

纳米线表面修饰研究及其应用取得进展

  生物传感器是分析生物体内各项生理活动指标的重要工具,在面向重大疾病的高效检测方面具有重要的研究价值和应用前景。目前,金属氧化物纳米材料在生物传感器的应用中表现出了突出的优势,然而它们的表面性质极大地影响着生物传感器的关键性能,如选择性、灵敏度、响应时间等。研究自组装单层膜能够方便地调控金属氧化物

用微晶体和纳米线来分解水

  科学家们正在寻找一种新的方法,以利用这个世界上最丰富的清洁能源之一:水。  通过纳米晶(又称量子点)与纳米线相结合,科学家们开发了一种新材料,这种新材料有望将水分解成氧和氢燃料,可用于汽车,公交车,船和其它类型的交通工具。  “氢被看作是清洁能源的重要来源,因为水在加热的时候,它是唯一的副产品,

“碳氮微纳米线研究”获得新成果

富氮碳氮微纳米线的气相方法合成。 碳氮材料具有较低的密度、良好的化学惰性和生物兼容性。理论预测还表明β-C3N4等碳氮晶体可能具有与金刚石相媲美的高硬度。然而由于氮元素具有很高的化学稳定性,在高温条件下通常以氮气的形式溢出。因此在以往报道的碳-氮体系材料中,氮含量通常偏低。 国家纳米科学中心孙连

研究提出金属纳米线制备新方法

  金属纳米线生长机理(左)与所制备的各种金属纳米线(右)   金属纳米线具有优异的电、光、磁与热学性能,在微电子、光电子、催化与传感器等领域具有诱人的应用前景。目前,基于多孔模板合成金属纳米线的实验室方法主要有电沉积法与无电沉积法。然而,这两种方法都有其不可克服的缺点。前者在制备过程中需要消

苏州纳米所直接印刷银纳米线研究取得新进展

  近年来,导电金属纳米线特别是银纳米线的应用研究受到广泛关注,主要用于制备透明导电材料以及可延展的弹性导电材料。由于金属纳米线的分散特征与传统的溶液型或颗粒型液态体系有较大区别,目前主要采用涂布、喷涂、旋涂等方法获得银纳米线导电薄膜。但这些现有的主流成膜方法并不能直接实现图案化,需要额外增加蚀刻等

中国科大研制出直径1纳米的纳米线催化剂

  近日,中国科学技术大学合肥微尺度物质科学国家研究中心教授曾杰课题组与湖南大学教授黄宏文合作,研制出一种兼具优异的催化活性和稳定性的质子交换膜燃料电池阴极催化剂。日前,该成果发表于《美国化学会志》。  质子交换膜燃料电池具有零排放、能量效率高、功率可调等优点,是未来电动汽车中最理想的驱动电源。但它

纳米线技术助攻-透明手机商用进展迈大步

  透明手机技术发展出现重大突破。史丹佛大学(StanfordUniversity) 近来全力发展以矽为基础的奈米线(Nanowire)技术;奈米线极为纤细,超越人眼可侦测范围,不仅能储存大量电能,催生新世代高能量奈米电池,亦可组成透明电极网路,实现手机电池、萤幕元件透明化设计,有助加快新世代透

焊接纳米线可以只用一束光

  据美国每日科学网站2月7日(北京时间)报道,美国科学家设计出一种新的纳米线焊接技术,可使用表面等离子体光子学,用一束简单的光将纳米线焊接在一起。发表于刚刚出版的《自然·材料学》杂志上的最新研究有望促成新式电子设备和太阳能设备的出现。   目前,有些纳米学家正专注于制造由金属纳米线组成的导电网格

硅纳米线将绘电子器件新版图

  虽然我国目前已经初步实现了硅纳米晶体管、传感器等纳米器件的部分功能,但是离纳米器件的大规模集成还有相当大的距离。   美国斯坦福大学研究人员已经研发出用硅纳米线制成的“纸电池”。   当全世界的科学家一窝蜂地关注碳纳米管时,殊不知,另一种一维纳米材料硅纳米线同样能给人带来意想不到的惊喜。

石墨烯包裹纳米线——柔性屏中新材料

  普渡大学研究人员利用等离子体增强化学气相沉积,将石墨烯包裹在铜纳米线上,有效防止铜线被氧化,并显著提高数据传输速度,降低传导热。这种材料在液晶和柔性显示器中的应用前景很好。  Zhihong Chen是普渡大学电子计算机工程专业的一名副教授,他的一名博士研究生Ruchit M

新纳米线可大幅提高红外探测灵敏度

  江汉大学曹元成教授团队与英国兰开斯特大学半导体中心首席研究员庄乾东博士团队合作研发新材料,可大幅提高红外探测灵敏度。4月10日,英国自然网站在线发表了他们撰写《基于柔性石墨基板铟砷纳米线红外光探测器》,该文将全文刊登在本月晚些时候出版的《自然》子刊《科学报道》。  曹元成介绍,铟砷纳米线作为高光

纳米线技术能将太阳能电池效率翻倍

  挪威科技大学(NTNU)研究小组开发了一种使用半导体纳米线材料制造超高效率太阳能电池的方法。如将其用于传统的硅基太阳能电池,这一方法有望以低成本将当今硅太阳能电池的效率提高一倍。该研究论文发表在美国化学学会期刊《ACS光子学》上。  新技术主要开发者、NTNU博士研究生安詹·穆克吉表示,他们的新

王中林高分子纳米线阵列取得突破

相关论文发表于《先进材料》和《物理化学杂志C》     科学家发现一普适通用的制造高分子纳米线阵列的新方法。这些纳米线阵列可广泛应用于不同的器件,并对高分子材料的发展起到重要的推动作用。这一生长及其控制方法发表于《先进材料》(Advanced Materials,2009,21,2072)和《

纳米线技术能将太阳能电池效率翻倍

挪威科技大学(NTNU)研究小组开发了一种使用半导体纳米线材料制造超高效率太阳能电池的方法。如将其用于传统的硅基太阳能电池,这一方法有望以低成本将当今硅太阳能电池的效率提高一倍。该研究论文发表在美国化学学会期刊《ACS光子学》上。 新技术主要开发者、NTNU博士研究生安詹·穆克吉表示,他们的新方

纳米线技术可将太阳能电池效率翻倍

  挪威科技大学(NTNU)研究小组开发了一种使用半导体纳米线材料制造超高效率太阳能电池的方法。如将其用于传统的硅基太阳能电池,这一方法有望以低成本将当今硅太阳能电池的效率提高一倍。该研究论文发表在美国化学学会期刊《ACS光子学》上。  新技术主要开发者、NTNU博士研究生安詹·穆克吉表示,他们的新

近场直写技术打印高度有序的微纳米线阵列

  ——精密元件制作的新思路  近年来,通过对传统静电纺丝工艺的改进,科研人员已经能够针对大量微纳米纤维进行同时操纵而制备出有序的纳米纤维阵列,然而却始终无法保证纤维阵列的高度有序性,从而极大的限制了其在精密微电子和光电子器件等领域的应用。为了弥补这种缺陷,需要开发新的制备工艺来实现对单根微纳米线的

纳米线阵列——记录神经元活性的新神器

  神经元可以接受刺激,产生兴奋并传导兴奋,是神经系统的基础。与神经元相关的疾病种类繁多,其中不少并没有有效的治疗方案。要开发治疗神经系统疾病的药物,一个重要的手段是监测神经元细胞对于候选药物的响应。目前记录神经元活性的方法多利用细胞内外离子浓度的差异,通过测量离子通道电流和细胞内电位的变化来评估神