通过几何失配应变设计和合成纳米晶粒|Science
与晶界相关的拓扑缺陷(GB缺陷)对纳米晶材料的电学、光学、磁性、力学和化学性质的影响是众所周知的。然而,通过实验来阐明这种影响是困难的,因为晶粒通常表现出大范围的尺寸,形状和随机的相对取向。加州大学伯克利分校A. Paul Alivisatos联合韩国首尔国立大学Taeghwan Hyeon教授等人证明了对胶体多面体纳米晶体的异质外延进行精确控制可以使晶粒有序生长,从而可以生产出具有均匀GB缺陷的材料样品。用包含Co3O4纳米立方核的多颗粒纳米晶体来说明这个方法,该核在每个面上都带有Mn3O4壳。各个壳是与对称性相关的相互连接的晶粒,相邻四方Mn3O4晶粒之间的大几何错位导致在Co3O4纳米立方核的锋利边缘处形成倾斜边界,这些倾斜边界通过错位连接。研究确定了控制这些高度有序的多晶粒纳米结构生产的四个设计原则。首先,衬底纳米晶体的形状必须指导过度生长相的晶体学取向。其次,衬底的尺寸必须小于位错之间的特征距离。第三,过度生长相与......阅读全文
首次在磁性拓扑绝缘体中观测到清晰的拓扑表面态
近十几年来,拓扑绝缘体已经成为凝聚态物理领域的一个重要研究方向。对于Z2拓扑绝缘体,其拓扑性质受到时间反演对称性的保护。如果将Z2拓扑绝缘体的时间反演对称性破坏,会形成一类新的拓扑态,即磁性拓扑绝缘体。磁性拓扑绝缘体可以表现出一系列新奇的物理性质,例如量子反常霍尔效应、手性马约拉纳费米子、轴子绝
光子拓扑自旋态研究新成果拓展光的拓扑学研究范畴
拓扑缺陷在物理学上通常指场分布无法连续形变、物理量无法定义的特殊点,也称为奇点,在涡旋或拓扑结构中普遍存在。拓扑缺陷在宇宙学、流体动力学、空气动力学、声学以及生物学等领域也十分常见,并在某些应用中起着重要作用。 近年来,探索拓扑结构的电磁类比在光学和光子学中引起了极大兴趣。在集成光子学领域,微
如何辨别超声检测缺陷和根部缺陷?
如何判定缺陷?首先要知道被检工件的规格和材质,壁厚、直径?铝合金、碳钢、不锈钢、合金钢?用直探头或者测厚仪测量母材和热影响区的厚度是必须的,有条件还要测量焊缝的厚度。其次要了解焊缝的结构,是单面焊双面成型V型坡口还是双面焊X型坡口?存在不等厚、错边?...对于情况简单的单面焊或双面焊超声检测,假设超
拓扑异构酶的用途
DNA的结构转换和解析 Ⅱ型拓扑异构酶 Ⅱ型拓扑异构酶巧妙地执行了打开DNA双螺旋的过程。它将DNA的一个双螺旋结构切开,并让另一个螺旋从缺口处穿过,在此之后一个双螺旋便被打开。这里显示的图片是由两个蛋白构建的:这个编号为1bgw的蛋白具有拓扑异构酶的下半部分结构,另外一个编号为1eil的蛋
拓扑异构酶的简介
DNA拓扑异构酶是存在于细胞核内的一类酶,他们能够催化DNA链的断裂和结合,从而控制DNA的拓扑状态,拓扑异构酶参与了超螺旋结构模板的调节。哺乳动物中主要存在两种拓扑异构酶。DNA拓扑异构酶I通过形成短暂的单链裂解-结合循环,催化DNA复制的拓扑异构状态的变化;相反,拓扑异构酶II通过引起瞬间双
拓扑相变研究中国也很强
一块碲化铋石头,普通人把它归类为“固体”,但它的准确分类应该是“拓扑绝缘体”。“拓扑”二字一加,物质的存在方式极大丰富。10月4日,三位美国人因为“拓扑相变”研究被授予2016年度诺贝尔物理学奖。而中国科学家近几年也在这一领域大放异彩。 “我读着他们的文章开始了研究,对他们的工作非常敬佩,他们
DNA拓扑学参数介绍
1.连环数(Linking number):在双螺旋DNA中,一条链以右手螺旋绕另一条链缠绕的次数,以L 表示(或以α表示),其计数方法为处于松弛环形DNA时的螺旋周数,肯定为整数,右手螺旋为正、左手螺旋为负。2.缠绕数(Twisting number):即DNA分子中的Watson-Crick螺旋
拓扑异构酶的分类
可分为两类一类叫拓扑异构酶I,一类叫拓扑异构酶II。拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接,它们不需要能量辅因子如ATP或NAD。E.coliDNA拓扑异构酶I又称ω蛋白,大白鼠肝DNA拓扑异构酶I又称切刻-封闭酶(nicking-closin
首次发现新奇拓扑量子态
最新发现与创新 从中国科学院合肥物质科学研究院获悉,该院稳态强磁场中心的郝宁宁研究员课题组,在拓扑新物态研究中取得最新进展,他们发现硫化铁化合物中存在一种交错二聚型反铁磁序,并且这种反铁磁序会调制体系进入一种新的拓扑物态:拓扑晶体反铁磁相。相关研究成果日前相继发表在欧洲物理学会《新物理学杂
拓扑异构酶的临床应用
这些药物包括阿霉素(adriamycin)、放线霉素D(actinomycinD)、道诺梅素(daunomycin)、VP-16、VM-26(替尼泊苷teniposide或者表鬼臼毒素(epipodophyllotoxin)。相对来说,无论是临床,还是处在试验阶段的,作为哺乳动物异构酶II型毒素
拓扑异构酶的用途介绍
DNA的结构转换和解析 Ⅱ型拓扑异构酶巧妙地执行了打开DNA双螺旋的过程。它将DNA的一个双螺旋结构切开,并让另一个螺旋从缺口处穿过,在此之后一个双螺旋便被打开。由两个蛋白构建的:这个编号为1bgw的蛋白具有拓扑异构酶的下半部分结构,另外一个编号为1eil的蛋白来自于一个旋转酶的结构域,它与拓
激子拓扑序研究新进展
南京大学物理学院王锐、王伯根和杜灵杰等人与美国麻省大学艾姆赫斯特分校Tigran Sedrakyan和北京大学杜瑞瑞组成的联合研究团队在电子-空穴关联系统中的激子拓扑序研究方面取得了进展。研究成果以“电子-空穴双层中的激子拓扑序(Excitonic topological order in im
拓扑电子态研究应用前景广阔
未来,变革性技术会出现在哪个方向?拓扑电子态及其材料研究,极有可能。拓扑电子态是什么?中国科学院院士、中国科学院物理研究所所长方忠这样解释:“它是一大类新的量子物态,其研究对当前物理学的发展产生了深远影响,不仅深刻改变人类对物态的认识,也为变革性技术的出现提供新的可能。”2023年度国家自然科学奖一
物理所搭建拓扑量子磁体
拓扑物态具有受保护的拓扑边界模式,对局域扰动展现出鲁棒性,是凝聚态物理和量子信息科学领域的前沿热点课题之一。人工量子系统凭借其结构的可定制性和参数的可调性,已成为研究拓扑物态的重要实验平台。然而,迄今为止,基于人工量子系统的拓扑物态研究集中在无相互作用的系统,而对具有相互作用的多体拓扑物态的量子模拟
DNA拓扑学的名称来源
首先以一260 bp双链线形B-DNA为例,此DNA在松弛时,螺旋数为25(260/10.4),首尾连接成环形后,为一松弛环形DNA,并处于最稳定状态。若将此线形DNA先拧松2个连环再连成环形,则可以形成两种环形DNA,一种称为松弛解链环形DNA;另一种环形DNA称为超螺旋DNA,其螺旋周数为25,
物理所搭建拓扑量子磁体
拓扑物态具有受保护的拓扑边界模式,对局域扰动展现出鲁棒性,是凝聚态物理和量子信息科学领域的前沿热点课题之一。人工量子系统凭借其结构的可定制性和参数的可调性,已成为研究拓扑物态的重要实验平台。然而,迄今为止,基于人工量子系统的拓扑物态研究集中在无相互作用的系统,而对具有相互作用的多体拓扑物态的量子模拟
DNA拓扑学的相关参数
1.连环数(Linking number):在双螺旋DNA中,一条链以右手螺旋绕另一条链缠绕的次数,以L 表示(或以α表示),其计数方法为处于松弛环形DNA时的螺旋周数,肯定为整数,右手螺旋为正、左手螺旋为负。2.缠绕数(Twisting number):即DNA分子中的Watson-Crick螺旋
简述拓扑异构酶的作用
是使超级螺旋松弛。所谓超级螺旋是DNA中张力积聚的形式。拓扑异构酶抑制成分是重要抗肿瘤药物,被认为通过稳定拓扑异构酶与DNA之间所形成的一种共价复合物来发挥作用,后者又为DNA复制机制设置了一障碍。科学家对以拓扑异构酶为作用目标的药物的药效起源仍不是很了解。由于该药物的作用而造成的正向DNA超级
概述拓扑异构酶的分类
可分为两类一类叫拓扑异构酶I,一类叫拓扑异构酶II。拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接,它们不需要能量辅因子如ATP或NAD。E.coliDNA拓扑异构酶I又称ω蛋白,大白鼠肝DNA拓扑异构酶I又称切刻-封闭酶(nicking-closin
细胞化学词汇拓扑异构体
中文名称:拓扑异构体外文名称:topological isomer定 义:拓扑异构体是除链环数(linking number)不同外其他性质均相同的DNA分子,可以通过凝胶电泳检测来观察。
压电效应和拓扑量子相变
近期,美国宾夕法尼亚州立大学刘朝星教授课题组从理论上提出压电响应的突变可以表征一系列二维拓扑相变,从而第1次揭示了压电系数和拓扑相变间的关系。相关成果以“Piezoelectricity and Topological Quantum Phase Transitions in Two-Dime
晶体缺陷符号及缺陷反应方程式
缺陷符号 以二元化合物MX为例(1)晶格空位:正常结点位没有质点,VM,VX(2)间隙离子:除正常结点位置外的位置出现了质点,Mi ,Xx(3)错位离子:M排列在X位置,或X排列在M位置上,若处在正常结点位置上,则MM,XX(4)取代离子:外来杂质L进入晶体中,若取代M,则LM,若取代X,则LX,若
拓扑物理学即将迎来爆发吗
拓扑物理学领域可能即将迎来它的爆发。2月28日凌晨,来自中科院物理所、南京大学和美国普林斯顿大学的3个研究组分别在《自然》杂志发布了最新相关研究成果。 他们的研究表明,数千种已知材料都可能具有拓扑性质,即自然界中大约24%的材料可能具有拓扑结构。 这个数字让人震惊。因为在这之前,科学家知道
“拓扑”让人看到物质更多新特性
2016年诺贝尔物理学奖解读 如果一根绳子上打了个结,我们想解开这个结,却发现绳子是首尾相连的,那么去除绳结的唯一办法,就是把绳子割断。物理学家用这个例子来比喻拓扑性质的坚固性。 2016年诺贝尔物理学奖授予三位在美国高校从事研究工作的科学家戴维·索利斯、邓肯·霍尔丹和迈克尔·科斯特利茨,以
研究实现可逆电流调控拓扑磁转变
近日,中国科学院合肥物质科学研究院强磁场科学中心在电操控新型磁结构动力学研究中取得新进展,相关研究成果以Current-Controlled Topological Magnetic Transformations in a Nanostructured Kagome Magnet(《在Kago
科学家建立“拓扑电子材料目录”
近日,中国科学院物理研究所/北京凝聚态物理国家研究中心的研究组发展出一套自动计算材料拓扑性质的新方法,在近4万种材料中发现了8千余种拓扑材料,十几倍于过去十几年间人们找到的拓扑材料的总和,并据此建立了拓扑电子材料的在线数据库。国际学术刊物《自然》在线发表了该成果【1】。 拓扑学是数学的重要分
科学家首次揭示激子拓扑序
原文地址:http://news.sciencenet.cn/htmlnews/2023/6/503043.shtm由南京大学、北京大学、美国麻省大学艾姆赫斯特分校组成的合作团队在电子-空穴关联系统中激子拓扑序的研究方面取得了重要进展。该工作从理论上提出了关联激子由于阻挫效应导致强量子涨落所产生的玻
研究人员提出拓扑反能带理论
原文地址:http://news.sciencenet.cn/htmlnews/2023/12/513903.shtm
陈绝缘体内或存在拓扑激子
激子(e)及其空穴(h)相互环绕(艺术图)。图片来源:俄克拉荷马大学科技日报北京8月28日电(记者刘霞)美国俄克拉荷马大学凝聚态物理学家发表论文称,陈绝缘体内或许存在一种新型激子——拓扑激子,这些激子有望催生新型量子器件。相关论文发表于最新一期《美国国家科学院院刊》。当电子吸收光并跃迁到更高能级或能
陈绝缘体内或存在拓扑激子
美国俄克拉荷马大学凝聚态物理学家发表论文称,陈绝缘体内或许存在一种新型激子——拓扑激子,这些激子有望催生新型量子器件。相关论文发表于最新一期《美国国家科学院院刊》。 当电子吸收光并跃迁到更高能级或能带时,受激电子会在其先前的能带中留下一个“电子空穴”。由于电子带负电荷而空穴带正电荷,两者会通过