GEN:展望微流控芯片在生命科学领域的应用
微流控技术,也被称作“芯片实验室”(LOAC),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。从1990年Manz等人首次提出了微型全分析系统的概念,到2003年Forbes杂志将微流控技术评为影响人类未来15件最重要的发明之一,微流控技术得到了飞速的发展,其中的微流控芯片技术作为当前分析科学的重要发展前沿,在生物、化学、医药等领域都发挥着巨大的作用,成为科学家手中流动的“ 芯”。根据GEN的报道,近几年来,基于微流控技术的技术报道和科学研究越来越多(下图)。微流控发展速度以生命科学发表论文计算(每年的复合增长率为5%)(一)微流控芯片在核酸分析中的研究微流控芯片技术显示了强大的核酸研究功能,......阅读全文
GEN:展望微流控芯片在生命科学领域的应用
微流控技术,也被称作“芯片实验室”(LOAC),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度
GEN:展望微流控芯片在生命科学领域的应用
微流控技术,也被称作“芯片实验室”(LOAC),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯
对微流控芯片技术的展望
微流控技术由微加工技术与三维培养相结合产生,在体外细胞培养中潜力较高。多器官微流控芯片技术可在微尺度对流体精准控制,模拟人体生理环境,克服了传统二维细胞培养模式与动物实验的不足,具有高度仿生性。MOC系统的发展结合了工程技术的优点,可调整流体流动和微通道中可控的局部组织-流体比率。MOC技术旨在建立
微流控芯片应用
微流控芯片技术在水环境污染分析中的研究尚处于起步阶段,因此多集中于优先污染物的相关报道,主要包括重金属、营养元素、有机污染物和微生物等。 1、用肝水体中重金属检测的微流控芯片系统 随着工农业的发展, 越来越多的重金属如汞、铬、铅、铜、镍、钒等被排放入水体,不仅会对水生动植物产生毒害作用,还能通过
微流控芯片的应用
微流控芯片技术是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本单元集成到一块微米尺度的芯片上,自动完成分析全过程。微流控芯片应用十分广泛: 1、在核酸研究中的应用核酸研究的技术如DNA萃取/纯化、PCR扩增、分子杂交、电泳分离和检测等都可以在微流控芯片上实现。如今已有
微流控芯片技术应用
按照技术原理,可暂将分子诊断技术大致划分为PCR技术、分子杂交、基因测序、核酸质谱、生物芯片(包括基因芯片、微流控芯片)5大类。今天就为大家分析介绍微流控技术的相关情况。在本文之前,小编已经陆续整理了一些相关文章,包括对分子诊断技术概况的介绍、NGS技术在病原微生物检测中的应用、数字PCR技术的优势
微流控在IVD领域中的应用
IVD主流有三大类,生化分析,免疫诊断,分子诊断。国外商业化微流控产品分布在传染病、基因测序、蛋白、PCR 等领域,由于微流控的小型集成化的优势,基本应用于 POCT 领域,其中雅培的i-STAT 系列成为 POCT 的经典代表产品,Illumina 的测序产品也占据了全球 70%的测序市场。 国内
微流控芯片
微流控是一种精确控制和操控微尺度流体,尤其特指亚微米结构的技术,是利用MEMS技术将一个大型实验室系统缩微在一个玻璃或塑料基板上,从而复制复杂的生物学和化学反应全过程,快速自动地完成实验。 微流控芯片有着强大的集成性,可以同时大量平行处理样品,具有灵敏度高、效率高、试剂消耗量低、环境污染小等特
微流控技术在液体活检领域的应用
摘要:随着肿瘤早期诊断及个体化治疗理念的提出与发展,人们对肿瘤研究不断深入,逐渐意识到在肿瘤诊治方面,传统肿瘤组织活检具有一定的局限性,而液体活检作为一种新型的获取肿瘤信息的方式,已引起人们的极大关注。目前,用于液体活检分析的工具很多,基于微流控技术分离和纯化特异性循环肿瘤生物标志物的平台具有通量
微流控芯片在生命科学研究中的应用
分析技术的进步极大地推动了生命科学的发展,同时也提出了许多新的问题。随着多种生物基因组测序的完成,特别是人类基因组计划(HGP)的完成将我们带入了后基因组时代,分子生物学已经进入蛋白质组学的研究阶段。仅仅从DNA水平上测定基因组序列只是揭示生命奥秘的第一步,更重要的是去发现、鉴定和测量每个基因所编码
SEA技术助力微流控芯片在快检领域的应用
微流控芯片技术是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析过程,可以实现从样品处理到检测的微型化、自动化、集成化及便携化,承载传统生物实验室和化学实验室的功能,具有强大的发展活力,并在即时检验领域(POCT)有美好的应用前景。体外诊断
微流控芯片技术及其在生物学领域的应用
1990年,Manz和Widmer等[1]首先提出微流控芯片的概念,自此微流控芯片技术得到了快速的发展,它具有有效降低试剂和样品消耗、加快分析速度、提高检测灵敏度、显著降低分析成本等优点[2],使得其在各个领域都有广泛的应用,包括基因分析、蛋白分析、天然产物活性成分的筛选、食品安全分析等。本文主要就
微流控芯片系统
微流控芯片又称芯片实验室,被公认是21世纪最重要的前沿科学技术之一。在与国际学术界几乎同期起步,缺少可借鉴先进技术和商业支撑的情况下,我所在微流控芯片细胞学研究、芯片检测仪和试剂盒研制方面开展了深入研究,并将其应用于以细胞生物学研究、疾病诊断和药物筛选为代表的生物医学领域。目前已构建了一系列具
微流控芯片优势
1)高分析效率:在PCR检验领域,相比传统的PCR检验,现有的微流控芯片能够将诊断检测过程缩短至最低 10-15 分钟; 2)高精确度:硅制的确定性侧向位移微流控芯片比之前公认的最精密的芯片粒子分离技术的分离孔径要小50倍,意味着检测精度也将提高50倍; 3)集成化:采用微加工机技术,将所需
微流控芯片原理
微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上, 自动完成分析全过程。 由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。
微流控芯片技术
微流控,是一种精确控制和操控微尺度流体,尤其特指亚微米结构的技术。通过在微尺度下流体的控制,在20世纪80年代,微流控技术开始兴起,并在DNA芯片,芯片实验室,微进样技术,微热力学技术等方向得到了发展。 微流控分析芯片最初在美国被称为"芯片实验室"(lab-on-a-chip),在欧洲被称为"
微流控芯片原理
微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上, 自动完成分析全过程。 由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。
浅析微流控芯片
微流控芯片是一种把整个化验室的功能,包括采样、稀释、加试剂、反应、分离、检测等集成在微芯片上,且可以多次使用的装置。微流控芯片常以硅、玻璃、石英、热塑性塑料为材料。微流控芯片的基本概念 微流控芯片实验室,又称其为芯片实验室或微流控芯片技术,是把生物、化学、医学分析过程的样品制备、反应、分离、检
何谓微流控芯片?
微流控芯片是用于微流控研究的装置,其中的微通道已经被模塑或图案化。形成微流控芯片的微通道被连接起来以允许流体流过不同的通道,从一个地方流到另一个地方。这些微流道网络通过进口和出口连接到外部环境。通过被动方式或外部有源系统(压力控制器、注射泵或蠕动泵)从微流控芯片中注入、管理、移除液体或气体。通道可具
微流控芯片的简介
微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上, 自动完成分析全过程。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、 流体、电子、材料、机械等 学科交叉的崭新研究领域。
微流控芯片的类型
目前常见微流控芯片主要有三个种类:单晶硅片、石英和玻璃、分子聚合物。 最早的微流控芯片是用单晶硅制作。这主要得益于成熟的微电子和微机械加工技术。玻璃微流控芯片具备优良的光学性能和支持电渗流特性,易于表面改性,可直接借鉴传统的毛细管电泳分析技术,因此在微流控芯片发展初期受到更多重视并得到相应发展
微流控芯片的前景
目前媒体普遍认为的 生物芯片(micro-arrays),如, 基因芯片、 蛋白质芯片等只是微流量为零的点阵列型杂交芯片,功能非常有限,属于 微流控芯片(micro-chip)的特殊类型,微流控芯片具有更广泛的类型、功能与用途,可以开发出 生物计算机、基因与 蛋白质测序、质谱和色谱等分析系统,成
微流控芯片的分类
包括:白金电阻芯片, 压力传感芯片, 电化学传感芯片, 微/纳米反应器芯片, 微流体燃料电池芯片, 微/ 纳米流体过滤芯片等。 ① 微流控芯片(microfluidic chip)是当前 微全分析系统(Miniaturized Total Analysis Systems)发展的热点领域。 微
微流控芯片的分类
包括:白金电阻芯片, 压力传感芯片, 电化学传感芯片, 微/纳米反应器芯片, 微流体燃料电池芯片, 微/纳米流体过滤芯片等。①微流控芯片(microfluidic chip)是当前微全分析系统(Miniaturized Total Analysis Systems)发展的热点领域。微流控芯片分析以芯
微流控芯片的特点
芯片集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以 大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。廉价,安全,因此,微流控分析系统在微型化。集成化合便
微流控芯片的进展
微流控分析芯片最初只是作为纳米技术革命的一个补充,在经历了大肆宣传及冷落的不同时期后,最终却实现了商业化生产。微流控分析芯片最初在美国被称为“芯片实验室”(lab-on-a-chip),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),随着 材料科学、
微流控芯片的分类
包括:白金电阻芯片, 压力传感芯片, 电化学传感芯片, 微/纳米反应器芯片, 微流体燃料电池芯片, 微/纳米流体过滤芯片等。①微流控芯片(microfluidic chip)是当前微全分析系统(Miniaturized Total Analysis Systems)发展的热点领域。微流控芯片分析以芯
微流控芯片的材料
微流控芯片起源于MEMS(微机电系统)技术,早期常用的材料是硅和玻璃。近年来高分子聚合物材料己经成为微流控芯片加工的主要材料,它的种类多、价格便宜、绝缘性好、性能指标优,可施加高电场实现快速分离,加工成型方便,易于实现批量化生产。 硅具有散热好、强度大、价格适中、纯度高和耐腐蚀等优点。随着微电
微纳流控发展及展望
微流控技术,称它是“颠覆性技术”丝毫不过。 自20世纪90年代以来,微流控芯片技术的出现极大促进了微型化操作和分析方法的研究进展。尽管微流控技术只经历了短短30年的发展,其已经从最初单纯的毛细管电泳的微型化技术,演变成为一种涵盖了从基础生物技术到生物医学诊断等各个领域的富有活力的工具性方法平台
微流控芯片技术在水环境污染中的应用
1、用于水体中重金属检测的微流控芯片系统 随着工农业的发展,越来越多的重金属如汞、铬、铅、铜、镍、钒等被排放入水体,不仅会对水生动植物产生毒害作用,还能通过富集作用进入生物链,对整个生态环境构成严重威胁。对上述重金属的检测,虽然可以使用高精度的原子吸收光谱和原子荧光光谱等方法。但是在应对突发性