质谱仪的历史简介
早期的质谱仪主要是用来进行同位素测定和无机元素分析,二十世纪四十年代以后开始用于有机物分析,六十年代出现了气相色谱-质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。 计算机的应用又使质谱分析法发生了巨大变化,使其技术更加成熟,使用更加方便。 八十年代以后又出现了一些新的质谱技术,如快原子轰击电离子源,基质辅助激光解吸电离源,电喷雾电离源,大气压化学电离源,以及随之而来的比较成熟的液相色谱-质谱联用仪,感应耦合等离子体质谱仪,富立叶变换质谱仪等。这些新的电离技术和新的质谱仪使质谱分析又取得了长足进展。今天,咱们就对这些质谱仪的优/缺点进行一下比较,让你更了解每一种质谱仪的特点,以便你在日后的工作中可以选择最佳的质谱仪。......阅读全文
质谱仪的历史简介
早期的质谱仪主要是用来进行同位素测定和无机元素分析,二十世纪四十年代以后开始用于有机物分析,六十年代出现了气相色谱-质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。 计算机的应用又使质谱分析法发生了巨大变化,使其技术更加成熟,使用更加方便。 八十年代以后又出现了一些新的
双聚焦质谱仪的历史发展详解
质谱的发展与核物理的早期发展紧密相连,而核物理的早期发展又是建立在真空管气体放电的技术上。克鲁克斯管是从早期用的盖斯勒管改良而来的,它是一个内部抽成较低气压的玻璃管,两端装有电极,阴极和阳极之间可以产生10-100千伏的高压。克鲁克斯管运行时的真空比0.1帕斯卡要低得多,这是射线管实验——特别是
质谱仪的简介
质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小
基质辅助激光解吸飞行时间质谱仪的历史简介
它是20世纪80-90年代发展起来的一种软电离新型有机质谱,通过引入基质分子,使待测分子不产生碎片,解决了非挥发性和热不稳定性生物大分子解析离子化的问题,是分析难挥发的有机物质的重要手段之一。2002年,诺贝尔化学奖授予了美国科学家约翰芬恩、日本科学家田中耕一和瑞士科学家库尔特维特里希,以表彰他
质谱仪简介
质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小
质谱仪简介
质谱仪简介质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/
质谱仪简介
利用运动离子在电场和磁场中偏转原理设计的仪器称为质谱计或质谱仪。前者指用电子学方法检测离子,而后者指离子被聚焦在照相底板上进行检测。质谱法的仪器种类较多,根据使用范围,可分为无机质谱仪和有机质谱计。常用的有机质谱计有单聚焦质谱计、双聚焦质谱计和四极矩质谱计。目前后两种用得较多,而且多与气相色谱仪和电
质谱仪简介
质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪。按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。
质谱仪简介
质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小分离
二次离子质谱仪的发展历史
自从Dunnoyer 第一次发现离子在真空中沿直线运动已经有100年的历史,自此以后,分子束的应用在二十世纪持续到二十一世纪,它为重大技术进步和基础研究奠定了基础,分子束用于溅射源是其中应用之一。 尽管在是十九世纪中叶溅射的现象已经观察到,直到十九世纪四十年代,随着真空技术的进步,Herzog
无机质谱仪的简介
无机质谱仪与有机质谱仪工作原理不同的是物质离子化的方式不一样,无机质谱仪是以电感耦合高频放电 (ICP)或其他的方式使被测物质离子化。 无机质谱仪主要用于无机元素微量分析和同位素分析等方面。分为火花源质谱仪、离子探针质谱仪、激光探针质谱仪、辉光放电质谱仪、电感耦合等离子体质谱仪。火花源质谱仪不
关于质谱仪的简介
质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小
离子质谱仪简介
离子质谱仪是一种用于食品科学技术、药学、材料科学领域的分析仪器,于2019年4月25日启用。 技术指标 1.质谱范围:1-260amu;2.灵敏度:低质量数Li(7):≥50Mcps/ppm;中质量数Y(89):≥100 Mcps/ppm;高质量数Tl(205):≥80 Mcps/ppm.
生物质谱仪的简介
自1886年Goldstein发明早期质谱仪器常用的离子源,到1942年第一台单聚焦质谱仪商品化,质谱基本上处于理论发展阶段。随后质谱在电离技术和分析技术上的发展和完善,使之很快应用于地质、空间研究、环境化学、有机化学、制药等多个领域。
质谱仪器的原理简介
用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将
质谱法质谱仪的种类简介
质谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用GC-MS进行分析,因为GC-MS使用EI源,得到的质谱信息多,可以进行库检索。毛细管柱的分离效果也好。如果在300C左右不能汽化,则需要用LC-MS分析,此时主要得分子量信息,如果是串联质谱,还可以得一
关于地塞米松的历史简介
1958年,Arth与Oliveto等分别合成了地塞米松,1960年Merck & Co.生产地塞米松磷酸钠,上市的地塞米松衍生物已达12种以上。 地塞米松的化学结构为泼尼松龙的B环9α位引入氟原子,D环16α位引入甲基;9α氟及16α甲基均使其抗炎活性显著增强,而16α甲基则显著地降低了地塞
单聚焦质谱仪简介
仅用一个扇形磁场进行质量分析的质谱仪称为单聚焦质谱仪,单聚焦质量分析器实际上是处于扇形磁场中的真空扇形容器,因此,也称为磁扇形分析器。 自从1919年阿斯顿发明了第一台质谱仪以来,到现在发展成形形色色的质谱仪,广泛用于科技生活和医疗卫生等领域。
气体质谱仪简介
气体质谱仪,多用于生产研究之中来监测气体和进行过程分析。气体质谱仪应用的领域十分广泛:如真空科学工业中加速器、高真空、超高真空系统和器件中的气体分析,航天航空工业中燃料箱、发动机、密封仓安全检漏、多种气体分析;电子工业中真空镀膜、微波管、彩色显像管等生产中的气体分析,环境监测中车载(船载)质谱监
双聚焦质谱仪简介
所谓双聚焦质量分析器是指分析器同时实现能量(或速度)聚焦和方向聚焦。是由扇形静电场分析器置于离子源和扇形磁场分析器组成。电场力提供能量聚焦,磁场提供方向聚焦。 双聚焦质谱仪是质谱仪之一。同时备有静电场离子分析器和磁场质量分析器,因而使仪器同时具能量聚焦和方向聚焦的双聚焦功能。适用于能量分布不同
离子阱质谱仪简介
在离子阱质谱仪中,可以捕获离子,因此也可以积累离子。离子阱技术具有无法比拟的高灵敏度和快速数据采集能力。将离子阱技术与数据依赖性采集技术(data-dependent acquisition)结合起来,我们就能进行高通量的质谱检测。不过,离子阱质谱仪的分辨率有限,捕获离子的能力不高,再
串联质谱仪的操作模式简介
串联质谱仪通常使用的都是离子模式来鉴定蛋白质的氨基酸序列。目前所有的MS/MS质谱仪都具有该功能。不过表1中列举的其它特殊的质谱仪也具有MS/MS功能。如果要发现蛋白质中的某个功能基团则需要用到母离子扫描功能或者中性丢失扫描功能,而这就必须用到三重四级杆质谱仪,如Q-Q-Q质谱仪,或四级杆离子阱
关于干燥技术的历史简介
二次世界大战以后,军队和政府开始广泛地进行有关脱水食品的实验。当时,人们对于脱水食品的味道和营养就有了更大的期望,大家都指望有一种更好的方法,使食品保存得更长久一些,同时,人们对食用方便性也有了更高的要求,既要保存原味、质地,又要保留营养成份,但是,人们的要求又与科学技术所能达到的水平有一定的距
膜分离技术的历史简介
膜分离现象广泛存在于自然界中,特别是生物体内,但人类对它的认识和研究却经过了漫长而曲折的道路。膜分离技术的工程应用是从20世纪60年代海水淡化开始的1960年洛布和索里拉金教授制成了第一张高通量和高脱盐率的醋酸纤纸素膜,这种膜具有对称结构,从此使反渗透从实验室走向工业应用。 其后各种新型膜陆续
关于裂隙灯的历史简介
1911年瑞典的眼科学家Gullstrand发明了著名的眼科检查仪器“裂隙灯”(Slit lamp),1920年vogt加以改进使其功能更加完善,成为了今天的裂隙灯蓝本。 1950年中国开始研制裂隙灯,1967年上海医用光学仪器厂率先试制成功。同年苏州医疗器械厂亦成功的设计制造出了裂隙灯,并且
关于端粒的发现历史简介
科学家们在寻找导致细胞死亡的基因时,发现了一种叫端粒的存在于染色体顶端的物质。端粒本身没有任何密码功能,它就像一顶高帽子置于染色体头上。 在新细胞中,细胞每分裂一次,染色体顶端的端粒就缩短一次,当端粒不能再缩短时,细胞就无法继续分裂了。这时候细胞也就到了普遍认为的分裂100次的极限并开始死亡。
噬菌体的发展历史简介
1915年,弗德里克· 特沃特(Frederick W.Twort)担任伦敦布朗研究所所长。特沃特在研究中力图寻找用于天花疫苗的痘苗病毒(vaccina virus)的变异株(variant ) ,这种变异株可能在活细胞外介质中复制。他在一项试验中将一部分天花疫苗接种给一个含营养琼脂的培养盘。虽
关于PCR技术的历史简介
Khorana (1971)等最早提出核酸体外扩增的设想:“经DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可合成tRNA基因。” 但由于当时基因序列分析方法尚未成熟,热稳定DNA聚合酶尚未报道以及引物合成的困难,这种想法似乎没有实际意义。加上70年代初分子克隆技术的
高分辨磁质谱仪简介
高分辨磁质谱仪是一种用于食品科学技术领域的分析仪器,于2012年5月10日启用。 技术指标 最高分辨率: 80,000(10%峰谷定义) 灵敏度:在最高灵敏度模式(即使用HR/SIR方式),分辨率为10,000(10%峰谷定义),进样100 fg 2,3,7,8-TCDD,将在m/z 321
四极杆质谱仪简介
四级杆质谱仪(Quadrupole Mass Spectrometer)的名字来源于其四级杆质量选择器(Quadrupole Mass Analyzer, QMA)。 在四级杆中,四根电极杆分为两两一组,分别在其上施加射频(Radio Frequency, RF)反相交变电压。位于此电势场中的