质谱法的应用简介

质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片图为基础,确定药物和代谢产物的存在;也可用于定量分析,用被检化合物的稳定性同位素异构物作为内标,以取得更准确的结果。 在无机化学和核化学方面,许多挥发性低的物质可采用高频火花源由质谱法测定。该电离方式需要一根纯样品电极。如果待测样品呈粉末状,可和镍粉混合压成电极。此法对合金、矿物、原子能和半导体等工艺中高纯物质的分析尤其有价值,有可能检测出含量为亿分之一的杂质。 利用存在寿命较长的放射性同位素的衰变来确定物体存在的时间,在考古学和地理学上极有意义。例如,某种放射性矿物中有放射性铀及其衰变产物铅的存在,铀238和铀235的衰变速......阅读全文

质谱法的应用简介

  质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量

质谱法简介

  质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由

质谱法的原理简介

  使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的

质谱法的方法应用

质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片

质谱法的应用介绍

质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片

质谱法质谱仪的种类简介

  质谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用GC-MS进行分析,因为GC-MS使用EI源,得到的质谱信息多,可以进行库检索。毛细管柱的分离效果也好。如果在300C左右不能汽化,则需要用LC-MS分析,此时主要得分子量信息,如果是串联质谱,还可以得一

大规模质谱法简介

         目前,研究人员们正在通过各种方法使大规模质谱法变得更有效,而且将这一技术工具缩小化。           大规模质谱法对于药物的发现来说是一个无法比拟的有力工具,而且它在定性与定量分析的应用中有着很大的价值。虽然大规模质谱法的应用能力和敏感性被不断的改进,但是在药物发现研究里面的

质谱法的应用生化检验

质谱法的应用:质谱中出现的离子有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子。综合分析这些离子,可以获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。质谱法特别是它与色谱仪及计算机联用的方法,已广泛应

质谱法的应用生化检验

质谱法的应用:质谱中出现的离子有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子。综合分析这些离子,可以获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。质谱法特别是它与色谱仪及计算机联用的方法,已广泛应

质谱法的原理及应用

  用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片)按它们的质荷比分离后进行检测的方法。测出了离子的准确质量,就可以确定离子的化合物组成。这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。  1898年W.维恩用电场和磁

质谱法的仪器简介和高真空系统简介

  仪器  利用运动离子在电场和磁场中偏转原理设计的仪器称为质谱计或质谱仪。  前者指用电子学方法检测离子,而后者指离子被聚焦在照相底板上进行检测。质谱法的仪器种类较多,根据使用范围,可分为无机质谱仪和有机质谱计。常用的有机质谱计有单聚焦质谱计、双聚焦质谱计和四极矩质谱计。目前后两种用得较多,而且多

二次离子质谱法的简介

二次离子质谱法是指当初级离子束(Ar+,O2+,N2+, O-,F-,N -或Cs+等) 轰击固体试样表面时,它可以从表面溅射出各种类型的二次离子,利用离子在电场,磁场或自由空间中的运动规律,通过质量分析器,可以使不同质荷比的离子分开,经分别计数后可得到二次离子强度-质荷比关系曲线的分析方法。

辉光放电质谱法的特点和应用

GDMS 是辉光放电质谱法(glow discharge mass spectrometry)的简称。是利用辉光放电源作为离子源与质谱仪器联接进行质谱测定的一种分析方法。GDMS在多个学科领域均获得重要应用。在材料科学领域, GDMS成为反应性和非反应性等离子体沉积过程的控制和表征的工具。GDMS已

质谱法的相关内容简介

  离子源   使样品电离产生带电粒子(离子)束的装置。应用最广的电离方法是电子轰击法,其他还有化学电离、光致电离、场致电离、激光电离、火花电离、表面电离、X 射线电离、场解吸电离和快原子轰击电离等。其中场解吸和快原子轰击特别适合测定挥发性小和对热不稳定的化合物。  质量分析器  将离子束按质荷比进

质谱法的的方法特点及应用目的

质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核

质谱法开发及食品安全应用

  2015年10月17日,第二届全国质谱分析学术报告会在浙江大学紫荆港校区体育馆盛大开幕,在5位院士的精彩报告后,多位学者做了高水平的大会报告。  台湾中山大学谢建台教授:多功能大气质谱(原位质谱)法的开发及其在食安快筛及包材成分分析的应用  台湾中山大学谢建台教授做题为《多功能大气(原位)质谱法

质子转移反应质谱法的研究和应用

1995年,因斯布鲁克大学粒子物理研究所的科学家们发明了这一分析方法。PTR-MS多用于环境空气中的挥发性有机物的实时监测。质子转移反应质谱仪通常由一个与漂移管直接连接的离子源以及分析系统共同组成(与选择粒子流动管质谱仪SIFT-MS不同,SIFT-MS并不与滤质器直接连通)。质子转移反应质谱仪通常

实验室分析方法质谱法的应用

质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片

质谱法

  质谱法具有如下特点:(1)灵敏度高,通常一次分析仅需几微克的样品。(2)响应时间短,分析速度快。(3)信息量大,能得到大量的结构信息和样品分子的相对分子质量。(4)可测定分子式。  一、质谱法的基本原理  理解并掌握质谱法的基本原理。  二、质谱的表示方法  最强的离子峰为基峰。  三、质谱仪 

质谱法的原理

使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道

质谱法的原理

使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道

质谱法的原理

使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散--离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道

质谱法的发现

  1898年W.维恩用电场和磁场使正离子束发生偏转时发现,电荷相同时,  质量小的离子偏转得多,质量大的离子偏转得少。1913年J.J.汤姆孙和F.W.阿斯顿用磁偏转仪证实氖有两种同位素[kg1]Ne和[kg1]Ne阿斯顿于1919年制成一台能分辨一百分之一质量单位的质谱计,用来测定同位素的相对丰

质谱法的定义

质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核

质谱法的定义

质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核

质谱法的特点

气体或固体、液体蒸气的分子受一定能量的电子束轰击或强电场的作用,失去一个价电子而形成带正电荷的分子离子;与此同时,分子离子还可进一步发生一些有规律的断裂,生成各种碎片离子。这些带有正电荷的离子在电场、磁场作用下按质荷比(用m/z或m/e表示,即离子质量与电荷量的比值)的大小排列、分析,并依次被检测、

质谱法概述

质谱法是通过将试样转化为运动的气态离子并按质荷比m/z大小进行分离记录的分析方法,所得结果即为质谱图。根据质谱图提供的信息,可以进行多种有机物及无机物的定性定量分析、复杂化合物的结构分析、样品中各种同位素的测定及固体表面结构和组成分析。质谱法是利用带电粒子在磁场或电场中的运动规律,按其质荷比m/z实

质谱法概述

质谱法是通过将试样转化为运动的气态离子并按质荷比m/z大小进行分离记录的分析方法,所得结果即为质谱图。根据质谱图提供的信息,可以进行多种有机物及无机物的定性定量分析、复杂化合物的结构分析、样品中各种同位素的测定及固体表面结构和组成分析。质谱法是利用带电粒子在磁场或电场中的运动规律,按其质荷比m/z实

质谱法的仪器介绍

利用运动离子在电场和磁场中偏转原理设计的仪器称为质谱计或质谱仪。前者指用电子学方法检测离子,而后者指离子被聚焦在照相底板上进行检测。质谱法的仪器种类较多,根据使用范围,可分为无机质谱仪和有机质谱计。常用的有机质谱计有单聚焦质谱计、双聚焦质谱计和四极矩质谱计。目前后两种用得较多,而且多与气相色谱仪和电

串联质谱法的原理

使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小。在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道