血清素化显著增加了WDR5对组蛋白H3的结合亲和力
组蛋白 H3Q5 (H3Q5ser) 的血清素化是最近发现的组蛋白翻译后修饰,在神经元细胞分化过程中作为与 H3K4me3 协同作用的基因激活的许可标记。然而,任何特异性识别 H3Q5ser 的蛋白质仍然未知。 2021年6月18日,中国科学技术大学臧建业,张璇及上海交通大学Mo Xi共同通讯在Science Advances 在线发表题为“Structural insights into the recognition of histone H3Q5 serotonylation by WDR5”的研究论文,该研究发现 WDR5 与组蛋白 H3 的 N 端尾部相互作用,并充当 H3Q5ser 的“阅读器”。 WDR5 与 H3Q5ser 和 H3K4me3Q5ser 肽复合物的晶体结构表明,血清素基团位于 WDR5 的浅表面口袋中。在神经母细胞瘤细胞中的实验表明,WDR5-H3Q5ser 相互作用的破坏会阻碍 H3K4......阅读全文
血清素化显著增加了WDR5对组蛋白H3的结合亲和力
组蛋白 H3Q5 (H3Q5ser) 的血清素化是最近发现的组蛋白翻译后修饰,在神经元细胞分化过程中作为与 H3K4me3 协同作用的基因激活的许可标记。然而,任何特异性识别 H3Q5ser 的蛋白质仍然未知。 2021年6月18日,中国科学技术大学臧建业,张璇及上海交通大学Mo Xi共同通讯
高冠军/戴俊彪合作果蝇组蛋白H3/H4系统解析组蛋白剂量
组蛋白(Histone)在真核生物染色体中扮演着重要的角色,是染色体结构单元核小体的重要组成部分。由核心组蛋白H3,H4,H2A,H2B形成的八聚体是DNA缠绕的主要承载体【1】。除了用以装配染色体外,组蛋白的另外一个重要功能是参与基因组信息的表达调控。组蛋白氨基酸残基上的翻译后修饰如乙酰化、甲
为什么选择组蛋白H3为细胞核的内参指标?
为什么选择组蛋白H3为细胞核的内参指标呢?当实验样品中只是核蛋白,而不是细胞总蛋白提取液时,可以用组蛋白H(Histone H),或者增殖细胞核抗原(PCNA)等为核内参抗体。除了这些,其它常见的核蛋白内参还有K70, K80, Lamin A和B。但是需要注意的问题是核蛋白内参的选择需要考
人组蛋白H3赖氨酸27(H3K27me3)检测试剂盒使用说明
检测原理试剂盒采用双抗体一步夹心法酶联免疫吸附试验(ELISA)。往预先包被组蛋白H3赖氨酸27(H3K27me3)抗体的包被微孔中,依次加入标本、标准品、HRP标记的检测抗体,经过温育并彻底洗涤。用底物TMB显色,TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样
日本“H3”新型火箭发射失败
原文地址:http://news.sciencenet.cn/htmlnews/2023/3/495460.shtm
组蛋白乙酰化定量分析
组蛋白乙酰化修饰是基因表观转录调控的重要机制.组蛋白翻译后修饰所引起的染色质结构重塑在真核生物基因表达调控中发挥着重要的作用.组蛋白乙酰化主要发生在H3、H4的N端比较保守的赖氨酸位置上,是由组蛋白乙酰转移酶和组蛋白去乙酰化酶协调进行。组蛋白乙酰化呈多样性,核小体上有多个位点可提供乙酰化位点,但特定
H34基因编码功能及结构描述
组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白核小体由大约146 bp的DNA包裹在组蛋白八聚体周围,该组蛋白八聚体由四个核心组蛋白(H2A、H2B、H3和H4)中的每一个组成。染色质纤维通过连接组蛋白h1与核小体之间的dna相互作用进一步紧密,形成高阶染色质结构。该基因无内含子,编码一个复制
H34基因编码功能及结构描述
组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白核小体由大约146 bp的DNA包裹在组蛋白八聚体周围,该组蛋白八聚体由四个核心组蛋白(H2A、H2B、H3和H4)中的每一个组成。染色质纤维通过连接组蛋白h1与核小体之间的dna相互作用进一步紧密,形成高阶染色质结构。该基因无内含子,编码一个复制
H34基因突变与药物因子介绍
组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白核小体由大约146 bp的DNA包裹在组蛋白八聚体周围,该组蛋白八聚体由四个核心组蛋白(H2A、H2B、H3和H4)中的每一个组成。染色质纤维通过连接组蛋白h1与核小体之间的dna相互作用进一步紧密,形成高阶染色质结构。该基因无内含子,编码一个复制
组蛋白H3K9me3(H3K9三甲基)多克隆抗体介绍
应用:ChIP, ChIP-Seq, ELISA, IF, IHC, IP, WB克隆:多克隆是否带有标记:无标记寄主:兔子同型对照:IgG纯化:亲和纯化反应物种:可用物种广泛,人,小鼠,大鼠浓度:1 mg/ml描述:兔多克隆抗体是针对K9三甲基化的组蛋白H3相应的合成肽,芯片级免疫原:一种人工合成
关于组蛋白的概述
组蛋白的基因非常保守。亲缘关系较远的种属中,四种组蛋白(H2A、H2B、H3、H4)氨基酸序列都非常相似,如海胆组织H3的氨基酸序列与来自小牛胸腺的H3的氨基酸序列间只有一个氨基酸的差异,小牛胸腺的H3的氨基酸序列与豌豆的H3也只有4个氨基酸不同。不同生物的H1序列变化较大,在某些组织中,H1被
CENPA基因突变与药物因子介绍
着丝粒是分化的染色体结构域,它规定了染色体的有丝分裂行为。该基因编码着丝粒蛋白,该蛋白包含一个组蛋白h3相关的组蛋白折叠结构域,该结构域是靶向着丝粒所必需的。着丝粒蛋白a被认为是修饰核小体或核小体样结构的一个组成部分,其中它取代了核小体颗粒(h3-h4)2四聚体核心中1个或两个常规组蛋白h3的拷贝。
CENPA基因编码功能及结构描述
着丝粒是分化的染色体结构域,它规定了染色体的有丝分裂行为。该基因编码着丝粒蛋白,该蛋白包含一个组蛋白h3相关的组蛋白折叠结构域,该结构域是靶向着丝粒所必需的。着丝粒蛋白a被认为是修饰核小体或核小体样结构的一个组成部分,其中它取代了核小体颗粒(h3-h4)2四聚体核心中1个或两个常规组蛋白h3的拷贝。
Nature:血清素竟然也调控基因表达?!
美国西奈山伊坎医学院的Ian Maze领导了这项研究。清华大学医学院的李海涛课题组、普林斯顿大学等机构的研究人员也参与了研究。这项成果于3月份发表在《Nature》杂志上,有助于人们更好地了解各种脑部疾病,包括情绪失调、药物滥用/成瘾和神经退行性疾病。 这项研究围绕着DNA以及它如何形成每个人
关于组蛋白组成部分的介绍
组蛋白是存在于染色体内的与DNA结合的碱性蛋白质,染色体中组蛋白以外的蛋白质成分称非组蛋白。绝大部分非组蛋白呈酸性,因此也称酸性蛋白质或剩余蛋白质。组蛋白于1834年由德国科学家A.科塞尔发现。组蛋白对染色体的结构起重要的作用。染色体是由重复单位──核小体组成。每一核小体包括一个核心8聚体(由4
关于组蛋白修饰的方式—甲基化的基本信息介绍
组蛋白甲基化是由组蛋白甲基化转移酶(histonemethyl transferase,HMT)完成的。甲基化可发生在组蛋白的赖氨酸和精氨酸残基上,而且赖氨酸残基能够发生单、双、三甲基化,而精氨酸残基能够单、双甲基化,这些不同程度的甲基化极大地增加了组蛋白修饰和调节基因表达的复杂性。甲基化的作用
H34基因的结构特点及主要作用
组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白核小体由大约146 bp的DNA包裹在组蛋白八聚体周围,该组蛋白八聚体由四个核心组蛋白(H2A、H2B、H3和H4)中的每一个组成。染色质纤维通过连接组蛋白h1与核小体之间的dna相互作用进一步紧密,形成高阶染色质结构。该基因无内含子,编码一个复制
Science新文章解析癌症表观遗传
目前大多数癌症治疗的效果并不理想。在力图根除肿瘤之时,肿瘤学家们往往借助于放疗或化疗,这使得在遏制癌性生长的同时也导致了健康组织受损。来自洛克菲勒大学C. David Allis实验室的一项新研究,或许可以使科学家们朝着高精确度靶向肿瘤的癌症治疗更近一步。他们的研究结果在线发表在3月2
H3C13基因编码功能及结构描述
组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白四个核心组蛋白(H2A、H2B、H3和H4)中的每一个分子形成一个八聚体,其中大约146 bp的DNA被包裹在被称为核小体的重复单元中。连接组蛋白H1在核小体之间与连接DNA相互作用,在染色质压缩成高阶结构中发挥作用该基因无内含子,编码一个复制依赖
H3C13基因突变与药物因子介绍
组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白四个核心组蛋白(H2A、H2B、H3和H4)中的每一个分子形成一个八聚体,其中大约146 bp的DNA被包裹在被称为核小体的重复单元中。连接组蛋白H1在核小体之间与连接DNA相互作用,在染色质压缩成高阶结构中发挥作用该基因无内含子,编码一个复制依赖
H3C13基因编码功能及结构描述
组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白四个核心组蛋白(H2A、H2B、H3和H4)中的每一个分子形成一个八聚体,其中大约146 bp的DNA被包裹在被称为核小体的重复单元中。连接组蛋白H1在核小体之间与连接DNA相互作用,在染色质压缩成高阶结构中发挥作用该基因无内含子,编码一个复制依赖
关于组蛋白的内容简介
组蛋白(histone)是指所有真核生物的细胞核中,与DNA结合存在的碱性蛋白质的总称。其分子量约10000~20000Kda。 真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合
组蛋白的相关信息介绍
组蛋白(histone)是指所有真核生物的细胞核中,与DNA结合存在的碱性蛋白质的总称。其分子量约10000~20000Kda。 真核生物体细胞染色质中的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的1/4。组蛋白与带负电荷的双螺旋DNA结合成DNA-组蛋白复合
核自身抗原精子蛋白的研究进展
到目前为止(2012年)的研究发现,人的sNASP和tNASP均具有结合组蛋白H3/H4的分子伴侣活性,而且它们还都可以结合组蛋白H1,具有组蛋白H1分子伴侣活性。因此,可想而知,它们在DNA复制后的染色质重折叠的最后一步或者最后阶段中发挥着至关重要的作用。NASP在一级结构上以及通过现代计算生
染色体中的蛋白质有什么用
染色体上的蛋白质包括组蛋白和非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体。通常可以用2mol/LNaCl或0.25mol/L的HCl/H2SO4处理使组蛋白与DNA分开。组蛋白分为H1、H2A、H2B、H3及H4。这些组蛋白都含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖
CENPA基因的结构特点和作用
着丝粒是分化的染色体结构域,它规定了染色体的有丝分裂行为。该基因编码着丝粒蛋白,该蛋白包含一个组蛋白h3相关的组蛋白折叠结构域,该结构域是靶向着丝粒所必需的。着丝粒蛋白a被认为是修饰核小体或核小体样结构的一个组成部分,其中它取代了核小体颗粒(h3-h4)2四聚体核心中1个或两个常规组蛋白h3的拷贝。
H3C14基因编码功能及结构描述
组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白该结构由包裹在核小体周围的约146 bp的DNA组成,由四个核心组蛋白(H2A、H2B、H3和H4)中的每一个组成的八聚体组成。染色质纤维通过连接组蛋白h1与核小体之间的dna相互作用进一步紧密,形成高阶染色质结构。该基因无内含子,编码一个复制依赖
H3C14基因编码功能及结构描述
组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白该结构由包裹在核小体周围的约146 bp的DNA组成,由四个核心组蛋白(H2A、H2B、H3和H4)中的每一个组成的八聚体组成。染色质纤维通过连接组蛋白h1与核小体之间的dna相互作用进一步紧密,形成高阶染色质结构。该基因无内含子,编码一个复制依赖
H3C14基因突变与药物因子介绍
组蛋白是构成真核生物染色体纤维核小体结构的基本核蛋白该结构由包裹在核小体周围的约146 bp的DNA组成,由四个核心组蛋白(H2A、H2B、H3和H4)中的每一个组成的八聚体组成。染色质纤维通过连接组蛋白h1与核小体之间的dna相互作用进一步紧密,形成高阶染色质结构。该基因无内含子,编码一个复制依赖
与--Notch信号通路相关因子介绍H3F3A
组蛋白是负责真核生物染色体纤维核小体结构的基本核蛋白。四个核心组蛋白(h2a、h2b、h3和h4)中的两个分子形成一个八聚体,大约146bp的DNA被包裹在一个称为核小体的重复单元中。连接组蛋白h1与核小体之间的连接DNA相互作用,并在染色质压缩成高阶结构的过程中发挥作用。这个基因包含内含子,它的m