Nature:血清素竟然也调控基因表达?!

美国西奈山伊坎医学院的Ian Maze领导了这项研究。清华大学医学院的李海涛课题组、普林斯顿大学等机构的研究人员也参与了研究。这项成果于3月份发表在《Nature》杂志上,有助于人们更好地了解各种脑部疾病,包括情绪失调、药物滥用/成瘾和神经退行性疾病。 这项研究围绕着DNA以及它如何形成每个人的遗传图谱展开。众所周知,DNA缠绕在组蛋白的周围,形成核小体。当编码特定基因的DNA紧密缠绕时,这个基因不大可能表达。相反,松散缠绕的基因更有可能表达。不过,血清素对此过程有何影响呢? 血清素化位点的鉴定 之前的研究表明,血清素通过转谷氨酰胺酶2(TGM2)的转酰胺作用与胞质蛋白形成共价键。为此,研究人员探索了核蛋白是否也有类似的修饰。首先,他们研究组蛋白是否能作为血清素化(serotonylation)的内源性底物。通过Western blotting和重组TGM2酶分析,他们确认组蛋白H3是血清素化的内源性底物。 之后,研......阅读全文

Nature:血清素竟然也调控基因表达?!

  美国西奈山伊坎医学院的Ian Maze领导了这项研究。清华大学医学院的李海涛课题组、普林斯顿大学等机构的研究人员也参与了研究。这项成果于3月份发表在《Nature》杂志上,有助于人们更好地了解各种脑部疾病,包括情绪失调、药物滥用/成瘾和神经退行性疾病。  这项研究围绕着DNA以及它如何形成每个人

Nature揭示基因调控新机制

  由来自新加坡国立癌症中心、法国国家科研中心分子细胞及遗传学研究所等处的科学家们组成的一个研究小组,获得了一项有关基因调控机制的重要研究发现。这项研究发表在1月30日的《自然》(Nature)杂志上。   利用新加坡国立癌症中心炎症生物学实验室Patrick Reilly博士开发的一种转基因

美国院士最新Nature解析基因网络调控

  来自加州大学伯克利分校分子与细胞生物学系的研究人员利用系统生物学方法,针对包含有多种保守型基因的被囊动物,分析了发育的基因调控网络结构在物种间的进化,指出了神经嵴这一关键结构的进化机制,为进一步解析物种发育进化提供了重要信息,相关成果公布在Nature杂志上。   领导这一研究的是加州大学伯克

Nature发现癌基因MYC的主调控因子

  根据来自明尼苏达大学共济会癌症中心的一项新研究中,一个导致了20%的癌症的关键致癌基因MYC,其盔甲上或许有一个弱点。MYC与非编码RNA PVT1之间的伙伴关系,有可能是了解MYC推动癌细胞机制的关键。这项研究发表在最新一期的《自然》(Nature)杂志上。  论文的主要作者、明尼苏达大学医学

Nature:表观遗传与基因调控的新发现

  最近在《Nature》杂志发表的一篇研究中,瑞士Friedrich Miescher生物医学研究所(FMI)的Dirk Schübeler和他的研究小组,描述了转录因子和DNA表观遗传修饰之间的相互作用,会对基因调控有何影响。科学家发现,转录因子可以通过DNA甲基化模式的改变而间接合作:通过去除

三篇Nature-Methods:定位基因组的调控序列

  科学家们利用染色质对DNase消化和Tn5转座的敏感性,对基因组的调控序列进行定位和解读。   近来越来越多的证据显示,许多遗传学差异并非直接影响基因,而是改变控制基因开/关的调控序列。近期Nature Methods杂志上发表了三篇文章,介绍了在基因组中定位调控序列的新技术,阐述了进行数

何川教授新发Nature综述:mRNA修饰介导的基因调控

  在分子生物学的中心法则中,遗传信息从DNA、RNA流向蛋白。基因组DNA和组蛋白上都存在可逆的表观遗传学修饰,这些修饰可以调控基因的表达,并由此决定细胞的状态,影响细胞的分化和发育。近年来人们发现,mRNA和其他RNA上也存在类似的调控机制。  N6-methyladenosine(m6A)是真

Nature:研究发现调控心脏细胞再生的特异基因Meis1

  日前,德克萨斯大学西南医学中心的研究人员发现了一个心脏损伤后调控其再生能力的特异基因。过去,人们并不知道这一称作Meis1的基因能够在心脏中发挥功能。新研究发现对于预防心力衰竭具有重要的意义。相关论文在线发表在《自然》(Nature)杂志上。   研究人员表示,婴儿出生后不久,就在心肌细胞停止

南方医科大颜光玗教授Nature揭示基因表达调控机制

  由来自法国巴黎-萨克雷大学、中国南方医科大学、美国宾夕法尼亚州立大学等机构的科学家组成的一个国际研究小组,揭示出了一些特殊的酶重塑细胞核中极其凝缩的遗传物质,由此控制哪些基因获得利用的机制。这一研究发现发布在1月27日的《自然》(Nature)杂志上。  中国南方医科大学的颜光玗(Kuangyu

Nature子刊:表观遗传预示精神疾病风险

  来自德克萨斯大学健康科学中心、杜克大学、哥伦比亚大学等机构的科学家们,在对青少年抑郁症的研究中发现一种基因的细微改变可以预测大脑对压力的反应。压力可引起诸如抑郁症、创伤后应激障碍和肥胖等健康问题。这项研究发表在8月2日的《自然神经科学》(Nature Neuroscience)杂志上。  科学家

什么是基因表达调控?基因表达调控有什么意义

意义:1.适应环境、维持生长和增殖:生物体赖以生存的外环境是在不断变化的,为了生存,所有活细胞都必须对外环境变化作出适当反应,调节代谢,以适应环境变化。生物体适应环境、调节代谢的能力与蛋白质分子的生物学功能有关。而蛋白质的水平又受基因表达的调控。2.维持个体发育与分化:多细胞生物调节基因的表达除为适

Nature重要发现:调控免疫的lncRNA

  当过度活化或脱靶时,免疫系统中正常对抗感染的一些细胞会转而攻击个体自身的组织。这一过 程会推动作为自身免疫性疾病组成部分的炎症。现在,来自纽约大学Langone医学中心的一项新研究揭示出了抑制这些机制的一种新方法,有可能会影响未来 的药物设计。相关论文发布在12月16日的《自然》(Nature)

Nature-Communications:智能应力调控功率器件

  【引言】  智能功率器件在基础电源控制到先进电源拓扑网络中均有广泛应用。传统的响应外部机械信号的电力系统通常由集成一系列应力传感器、A/D或D/A转换器、强电/弱电隔离器、功率器件等元件,在CPU控制下实现反馈的长链式控制系统。直接响应外部机械信号的智能功率器件有利于简化系统复杂度、提升可靠性及

Nature揭示发育的重要调控机制

  巨噬细胞也被称为清道夫细胞,是机体免疫系统的一个重要部分。在遇到病原体组分或炎症性细胞因子的时候,巨噬细胞会激活并加入对抗病原体的战斗。此外,巨噬细胞还参与了器官和组织发育,具有摧毁肿瘤细胞的能力。  过去人们认为,驻留在组织里的巨噬细胞来自于骨髓前体细胞,通过血液迁移到不同器官。但近年来研究显

何川教授最新Nature文章:基因调控新领域的最新发现

  N6-methyladenosine(m6A)是真核生物mRNA上最常见的一种转录后修饰,介导了超过80%的RNA碱基甲基化。这种可逆的mRNA甲基化修饰非常普遍,出现频率大约是3-5个残基/mRNA。m6A的研究发现开辟了真核生物转录后基因调控的新领域。  芝加哥大学的何川(Chuan He)

基因调控的介绍

  基因表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在三个水平上,即①DNA水平上的调控、转录控制和翻译控制;②微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的;③多细胞生物的基因调控是细胞分化、形态发生和个体发育的基础,这类调控一

基因调控的简史

  1900年F.迪纳特发现在含有乳糖和半乳糖的培养液中培养的酵母菌细胞中有分解半乳糖的酶,但是在葡萄糖的培养液中培养的酵母菌细胞中没有相应的酶。1930年H.卡尔斯特伦在关于细菌的研究中也发现类似的现象,并把生物细胞中的酶区分为组成酶和适应酶(亦称诱导酶)两类,前者是在任何情况下都存在的酶,后者是

基因表达的调控

转录调控可分为三种主要途径:1)遗传调控(转录因子与靶标基因的直接相互作用);2)调控转录因子与转录机制相互作用,3)表观遗传调控(影响转录的DNA结构的非序列变化)。通过转录因子直接调控靶标DNA表达是最简单和最直接的转录调控改变转录水平的方法。基因的编码区周围通常都具有几个蛋白质结合位点,具有调

2016年4月21日Nature期刊精华

  1. Nature:细菌群体CRISPR-Cas多样性有助限制病毒扩散  在一项新的研究中,来自英国埃克塞特大学等机构的研究人员证实宿主(如细菌)基因多样性通过限制寄生物(如病毒)进化而有助降低疾病扩散。相关研究结果于2016年4月13日在线发表在Nature期刊上,论文标题为“The dive

新方法可直观检测生理条件下的血清素变化

  Nat Methods |   血清素(又名五羟色胺,英文名为Serotonin或5-HT)在积极情绪中起着重要的作用,是负责快乐、放松和自信的主要神经递质。大多数脑细胞直接或间接受到血清素的影响,它调节着我们的情绪、社会行为、性欲、睡眠、记忆和学习能力。现有医学研究显示,血清素含量降低很可能是

Nature子刊:双功能CRISPRCas9,可同步实现基因编辑和调控

  哈佛医学院著名遗传学家George Church教授是基因编辑技术的鼻祖之一:2年前张锋使用CRISPR技术完成了多重基因组编辑,Church则使用CRISPR技术完成了RNA介导的人类基因组编辑。  自此之后,CRISPR/Cas9技术持续火爆,方便快捷的方式迅速风靡科研界,不论是医学研究,农

Nature子刊:乳酸调控基础神经激素

  去甲肾上腺素既是一种激素也是一种神经递质,它是大脑功能的基础,对积极性、压力应答、血压控制、疼痛和食欲非常关键。没有这种物质,人们就很难从睡梦中醒来或者集中精力工作。   日前,科学家们在大脑中发现了出人意料的去甲肾上腺素调控机制。这一机制将有望帮助人们设计新药物,解决与上述功能有关的健康问题

浙大Nature子刊解析RNA剪切调控

  近日来自浙江大学生命科学学院的研究人员在新研究中揭示了一个与Dscam互斥剪切有关RNA结构性基因座控制区域(locus control region),相关论文“An RNA architectural locus control region involved in Dscam mu

Nature新文章解析小RNA调控机制

  来自波士顿儿童医院和哈佛大学医学院的研究人员,在新研究中揭示了在Lin28介导的let-7选择性调控中起关键作用的一种核酸酶,相关论文“A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathwa

Nature子刊:调控代谢的miRNA开关

  长久以来,科学家们一直梦想着能将讨厌的白色脂肪细胞转变为棕色脂肪细胞,由此轻易消除多余的体重。来自波恩大学的研究人员现在朝着这一目标又走近了一步:他们破译了小鼠体内的一个“切换开关”,其可以显著促进脂肪燃烧。研究结果现在发表在科学期刊《自然通讯》(Nature Communications)

Nature挑战传统认知,细胞坏死的调控

  长期以来人们认为坏死性细胞死亡(necrotic cell death)只是由于感染或创伤对细胞造成严重压力所导致的一个被动的过程,而非是一种受到调控的机制。然而有越来越多的证据表明至少有一种形式的坏死是由一个称作坏死性凋亡(necroptosis)的细胞程序所介导。   在发表于11月2

血清素的计算化学数据

  1.疏水参数计算参考值(XlogP):无  2.氢键供体数量:3  3.氢键受体数量:2  4.可旋转化学键数量:2  5.互变异构体数量:9  6.拓扑分子极性表面积:62  7.重原子数量:13  8.表面电荷:0  9.复杂度:174  10.同位素原子数量:0  11.确定原子立构中心数

血清素的形成过程介绍

  色氨酸经色氨酸羟化酶催化首先生成5-羟色氨酸,再经5-羟色氨酸脱羧酶催化成5-羟色胺。  5-羟色胺最早是从血清中发现的,又名血清素,广泛存在于哺乳动物组织中,特别在大脑皮层质及神经突触内含量很高,它也是一种抑制性神经递质。在外周组织,5-羟色胺是一种强血管收缩剂和平滑肌收缩刺激剂。在体内,5-

多篇文章解读血清素领域重要研究成果!

  血清素,又名5-羟色胺,其广泛存在于哺乳动物组织中,特别在大脑皮层质及神经突触内含量很高。血清素一种能够抵抗悲伤的物质,这种产生于脑干神经元里的神经递质对于调节我们的情绪不可或缺。近年来,科学家们在对血清素的研究上取得了多项研究成果,本文中,小编就对相关研究进行整理,分享给大家!  【1】Nat

研究发现:血清素与血清神经元或可调控哺乳动物性取向

  虽然雄性如何选择交配对象一直都是社交行为中被重点关注的问题,但科学家还未能从分子和细胞作用机制上解释哺乳动物性取向。   北京大学生命科学学院院长饶毅教授课题组通过研究发现,神经递质五羟色胺(5-HT,又称血清素)在哺乳动物性取向中具有重要作用。野生型雄性小鼠的正常性取向为雌性,