通过传感器实现植物细胞中生长素实时观察

Nature杂志在线发表了来自德国马普研究所Gerd Jürgens课题组和Birte Höcker课题组合作题为“A biosensor for the direct visualization of auxin”的研究论文。该论文开发出一种新颖的生长素传感器,即经过人工改造后的人工蛋白质,可以实时显示植物植物细胞中生长素的空间分布。该传感器为研究人员打开了对植物内部运作的全新见解。 生长素在植物生命中起着核心作用,不仅可以调控细胞分裂和促进细胞伸长,同时以其分布的浓度梯度影响植物个体及其器官的形态建成。化学渗透模型表明生长素处于质子态可自由扩散, 而离子态则需要膜定位的运输生长素的载体来主动运输。生长素向胞内运输是AUX/LAX蛋白家族包括AUX1、LAX1、LAX2和LAX3; 向胞外运输为PIN蛋白家族和ABCB/PGP蛋白家族(见下图),这些共同作用使生长素在很短的时间内在组织中快速的重新分布。 图 1......阅读全文

通过传感器实现植物细胞中生长素实时观察

  Nature杂志在线发表了来自德国马普研究所Gerd Jürgens课题组和Birte Höcker课题组合作题为“A biosensor for the direct visualization of auxin”的研究论文。该论文开发出一种新颖的生长素传感器,即经过人工改造后的人工蛋白质,可

植物生长素的主要作用

植物生长素是由具分裂和增大活性的细胞区产生的调控植物生长速度和方向的激素。其化学本质是吲哚乙酸。主要作用是使植物细胞壁松弛,从而使细胞生长伸长,在许多植物中还能增加RNA和蛋白质的合成。调节植物生长,尤其能刺激茎内细胞纵向生长并抑制根内细胞横向生长的一类激素。它可影响茎的向光性和背地性生长。

植物激素生长素有关历史

  C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长

植物生长素激素作用的机理

一、是认为激素作用于核酸代谢,可能是在DNA转录水平上。它使某些基因活化,形成一些新的mRNA、新的蛋白质(主要是酶),进而影响细胞内的新陈代谢,引起生长发育的变化。二、则认为激素作用于细胞膜,即质膜首先受激素的影响,发生一系列膜结构与功能的变化,使许多依附在一定的细胞器或质膜上的酶或酶原发生相应的

植物生长素的主要作用介绍

  生长素对生长的促进作用主要是促进细胞的生长,特别是细胞的伸长。植物感受光刺激的部位是在茎的尖端,但弯曲的部位是在尖端的下面一段,这是因为尖端的下面一段细胞正在生长伸长,是对生长素最敏感的时期,所以生长素对其生长的影响最大。趋于衰老的组织生长素是不起作用的。生长素能够促进果实的发育和扦插的枝条生根

植物生长素的的研究历史

  植物生长素的发现体现了科学研究的基本思路:  A.提出问题,做出假设,设计试验,得出结论;B.试验中体现了设计试验的单一变量原则;达尔文试验的单一变量是尖端的有无,温特试验的单一变量是琼脂是否与胚芽鞘尖端接触过。  1880年 C.R.达尔文及其子在最后出版的著作《植物运动的本领》中阐明,禾本科

植物生长素的相关功能介绍

  虽然对激素作用机理有不同的解释,但是,无论哪一种解释都认为,激素必须首先与细胞内某种物质特异地结合,才能产生有效的调节作用。这种物质就是激素的受体。  1.激素受体:植物激素受体是指能与植物激素专一地结合的物质。这种物质能和相应的物质结合,识别激素信号,并将信号转化为一系列的生理生化反应,最终表

植物激素生长素的作用简介

  1.低浓度的生长素有促进器官伸长的作用。  从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛

植物激素生长素的存在的部位

  生长素在低等和高等植物中普遍存在。生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。  用胚芽鞘切段证明植物体内的生长素通常只能从植物的形态上端(根尖分生区或芽)向下端(茎)运输,而

关于植物生长素的生理效应介绍

  植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。  生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导 乙烯的形成有关。生长素的生理效应表现在两个层次上。  在细胞水平上,生长素可刺激形成层 细胞分裂;刺激枝的

植物生长素试剂盒的操作步骤

   植物生长素(IAA)试剂盒操作步骤    1.使用前,将所有试剂充分混匀。不要使液体产生大量的泡沫,以免加样时加入大量的气泡,产生加样上的误差。    2.根据待测样品数量加上标准品的数量决定所需的板条数。每个标准品和空白孔建议做复孔。每个样品根据自己的数量来定,能使用复孔的尽量做复孔。标本用

植物生长素(GH)酶联免疫分析(ELISA)

植物生长素(GH)酶联免疫分析(ELISA)试剂盒使用说明书本试剂仅供研究使用       目的:本试剂盒用于测定植物细胞,组织及相关液体样本中生长素(GH)的含量。实验原理:  本试剂盒应用双抗体夹心法测定标本中植物生长素(GH)水平。用纯化的植物生长素(GH)抗体包被微孔板,制成固相抗体,往包被

植物生长素的两重性

  较低浓度促进生长,较高浓度抑制生长。植物不同的器官对生长素最适浓度的要求是不同的。根的最适浓度为10 -10mol/L,芽的最适浓度约为10 -8mol/L,茎的最适浓度约为10 -4mol/L。在生产上常常用生长素的类似物(如 萘乙酸、2,4-D等)来调节植物的生长如生产豆芽菜时就是用适宜茎生

比科学家研究植物生长素获大奖

  比利时根特大学和弗拉芒生物技术学院7日联合宣布,在两所高校工作的科学家伊日·弗里姆尔由于在植物生长素等方面的创新研究,荣获2010年克贝尔基金会欧洲科学奖,奖金75万欧元。   弗里姆尔的研究领域包括植物的应变能力与生长。他解释说,植物与动物不同,无法躲避高温、干旱或者其他危险

研究人员提出植物生长素起源新观点

  记者近日从中科院昆明植物所获悉,该所黄锦岭和胡向阳课题组通过对植物生长素主要合成途径进行分析,发现其合成途径是垂直和横向遗传的嵌合体,并且起源于早期陆生植物。相关成果发表于《植物科学发展趋势》杂志。  据了解,生长素是影响植物发育过程的最重要激素之一,可调控顶端优势、细胞延伸、维管束分化、脱落抑

植物生长素(IAA)试剂盒说明书

植物生长素(IAA)试剂盒是固相夹心法酶联免疫吸附实验(ELISA).已知待测物质浓度的标准品、未知浓度的样品加入微孔酶标板内进行检测。先将待测物质和生物素标记的抗体同时温育。洗涤后,加入亲和素标记过的HRP。再经过温育和洗涤,去除未结合的酶结合物,然后加入底物A、B,和酶结合物同时作用。产生颜色。

科学家阐明植物生长素调控植物差异性生长的分子机制

  4月3日, 福建农林大学海峡联合研究院园艺中心,中科院上海逆境生物学研究中心徐通达教授团队在国际权威杂志Nature上发表题为“TMK1-mediated auxin signalling regulates differential growth of the apical hook”的文章,

植物所发现VPS28调控生长素介导的植物生长发育

  内吞体分选转运复合体(ESCRT)在真核生物中高度保守,在泛素化质膜蛋白的胞内降解过程中发挥重要作用。ESCRT复合体主要参与多泡体形成、胞质分裂和病毒出芽过程。该复合体含有多个组分,在动物中研究较多,而在植物中一些组分的功能尚不清楚。  中国科学院植物研究所程佑发研究组通过遗传筛选,获得胚胎和

植物细胞:生长素稳态调控氮肥利用效率机制获揭示

   氮肥是促进作物产量提高的要素之一。然而,近年来氮肥使用量的攀升并未带来农作物产量大幅提高,经济效益和生态效益反而呈下降趋势。如何提高氮肥利用效率已成为农业生产中亟待解决的问题。培育氮肥高效利用的作物新品种是降低生产成本、减少环境污染、大幅增加生态效益的有效途径。  12月29日,《植物细胞》在

PLoSGenetics:植物生长素空间分布和器官形态新发现

  作为植物发育调控最重要的激素,生长素的含量及其在器官中的分布(空间分布)决定了植物器官的形态建成、株型以及向重性反应等生物学进程。然而,目前对植物生长素在器官中空间分布的调控机制仍缺乏了解。   中科院植物研究所胡玉欣研究组以拟南芥为材料,通过研究功能获得及缺陷突变体,发现植物特有转录因子ID

探究生长素对植物生根的影响为什么要去芽

确实需要除去幼芽,生物实验的一个很重要的原则就是控制单一变量,幼芽会产生生长素,会促进根的生长,无法观察出生长素类似物对生根的影响,所以要去除,同时嫩叶也会产生生长素.光秃秃的一根纸条也可以,最好带少许成熟的叶片

植物细胞内生长素运输调控机制研究取得进展

  近日,中国农业科学院生物技术研究所作物基因组及遗传改良研究室在植物细胞内生长素运输调控机制研究方面取得新进展。  通过对构建的水稻RNAi突变体库的筛选,研究人员分离得到了一个影响水稻灌浆期茎秆长度的突变体。对突变体的进一步研究发现,突变体内发生表达下调的为一个未知功能的新基因OsCOLE1(O

生长素信号途径调控植物差异性生长的分子机制

  4月3日,《自然》(Nature)杂志在线发表了原中国科学院分子植物卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心徐通达(现福建农林大学海峡联合研究院园艺中心教授)研究组完成的题为TMK1-mediated auxin signalling regulates differentia

微生物所揭示miRNA调控植物生长素信号途径的机制

  microRNA(miRNA)是一类广泛存在于生物体的21nt到24nt的短的非编码RNA,通过碱基互补配对的方式介导其靶标mRNA的剪切或者抑制其翻译。在植物中,miRNA主要通过剪切靶标mRNA调控生长发育以及抗病抗逆作用。植物生长素(auxin)信号途径在植物生长发育过程中具有重要的调控作

遗传发育所生长素调控植物根尖干细胞维持研究取得进展

  和动物不同,高等植物只能固着生长的特点决定了其能够根据复杂的环境条件不断地调整器官的发生和发育进程。植物生长发育的这种可塑性是由于在茎尖和根尖生长点分生组织中央有一个具有持续分裂能力和分化功能的干细胞组织结构。这些干细胞伴随着植物的一生,它们的分化不仅产生了所有的地上和地下器官,而

研究揭示生长素信号途径调控植物差异性生长的分子机制

  4月3日,《自然》(Nature)杂志在线发表了原中国科学院分子植物卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心徐通达(现福建农林大学海峡联合研究院园艺中心教授)研究组完成的题为TMK1-mediated auxin signalling regulates differentia

研究揭示生长素信号途径调控植物差异性生长的分子机制

  4月3日,《自然》(Nature)杂志在线发表了原中国科学院分子植物卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心徐通达(现福建农林大学海峡联合研究院园艺中心教授)研究组完成的题为TMK1-mediated auxin signalling regulates differentia

植物所等在生长素调控气孔发育研究中取得新进展

  气孔是植物表皮的特殊结构,在调节植物与外界气体和水分交换过程中发挥着重要作用,直接影响了植物光合和蒸腾两个植物基本生理进程。气孔是原表皮细胞经过一系列的不对称分裂和对称分裂以及多次细胞命运决定和细胞分化形成的,因而气孔发育的调控也成为近些年研究细胞分裂和分化的理想模型和热点。已知多肽和油菜素内酯

生长素的作用

1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性

版纳植物园揭示Mn毒害通过生长素途径抑制主根生长机理

   Mn毒害抑制了主根生长和侧根发育,但其中的生理与分子机理尚不完全清楚。中国科学院西双版纳热带植物园园艺植物育种研究组联合培养研究生赵晶晶在其导师、研究员徐进的指导下,以拟南芥为材料,采用植物生理学、药理学、遗传学和分子生物学等研究手段,对Mn毒害调控植物根系发育的生理与分子机制进行了研究。结果