通过传感器实现植物细胞中生长素实时观察
Nature杂志在线发表了来自德国马普研究所Gerd Jürgens课题组和Birte Höcker课题组合作题为“A biosensor for the direct visualization of auxin”的研究论文。该论文开发出一种新颖的生长素传感器,即经过人工改造后的人工蛋白质,可以实时显示植物植物细胞中生长素的空间分布。该传感器为研究人员打开了对植物内部运作的全新见解。 生长素在植物生命中起着核心作用,不仅可以调控细胞分裂和促进细胞伸长,同时以其分布的浓度梯度影响植物个体及其器官的形态建成。化学渗透模型表明生长素处于质子态可自由扩散, 而离子态则需要膜定位的运输生长素的载体来主动运输。生长素向胞内运输是AUX/LAX蛋白家族包括AUX1、LAX1、LAX2和LAX3; 向胞外运输为PIN蛋白家族和ABCB/PGP蛋白家族(见下图),这些共同作用使生长素在很短的时间内在组织中快速的重新分布。 图 1......阅读全文
生长素的作用
1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性
版纳植物园揭示Mn毒害通过生长素途径抑制主根生长机理
Mn毒害抑制了主根生长和侧根发育,但其中的生理与分子机理尚不完全清楚。中国科学院西双版纳热带植物园园艺植物育种研究组联合培养研究生赵晶晶在其导师、研究员徐进的指导下,以拟南芥为材料,采用植物生理学、药理学、遗传学和分子生物学等研究手段,对Mn毒害调控植物根系发育的生理与分子机制进行了研究。结果
版纳植物园揭示OsIAA4参与生长素介导的水稻株型建成
水稻是我国最重要的粮食作物之一,我国人口在未来20年仍将继续增长,对粮食的需求将持续增加,但耕地面积却在不断减少,因此提高主要农作物单产是实现粮食总产量增长的根本途径。按照作物产量性状遗传改良的实践,通过改良株型,提高品种的田间种植密度,进而促进光能利用率,可以增加作物产量。株型发育是当前及未来
生长素的基本作用
生长素最基本的作用是促进细胞的伸长生长,这种促进作用,在一些离体器官如胚芽鞘或黄化茎切段中尤为明显。生长素为什么能促进细胞的伸长生长,又以什么方式起作用的?植物细胞的最外部是细胞壁,细胞若要伸长生长即增加其体积,细胞壁就必须相应扩大。细胞壁要扩大,就首先需要软化与松弛,使细胞壁可塑性加大,同时合成新
生长素的主要作用
1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性
生长素的生理作用
一、教学目标1.概述植物生长素的生理作用。2.尝试探索生长素类似物促进插条生根的zui适浓度。二、教学重点和难点1.教学重点 生长素的生理作用。2.教学难点 探究活动:探索生长素类似物促进插条生根的zui适浓度。三、教学策略1.图形引导,问题入手。 阅读生物学方面的资料时,要能读懂模式图、示意图和
生长素的研究历史
C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的
生长素的存在部位
生长素在低等和高等植物中普遍存在。生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。用胚芽鞘切段证明植物体内的生长素通常只能从植物的形态上端(根尖分生区或芽)向下端(茎)运输,而不能相反
生长素的研究历史
C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的
脑脊液生长素的概述
生长素是一种同化激素,能促进DNA、RNA及蛋白质的合成,加强细胞对氨基酸的摄取,与胰岛素有拮抗作用,能抑制糖的利用,促进脂肪分解,使血糖升高。脑垂体前叶富含此种激素,其分泌受下丘脑的生长素释放抑制激素和生长素释放激素的调节,病理情况可影响生长素的分泌。
生长素的生理作用
1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性
激光雷达传感器与超声传感器在高通量植物表型研究
超声波与激光雷达(LiDAR)技术在数字园艺领域是探索最深入的传感器技术。此类技术可精确估计树木冠层的地理和结构参数,为高通量表型和精准农业研究提供输入信息。随着传感器技术突飞猛进,激光雷达LiDAR 正日益成为下一代植物表型传感器焦点研究方向,该技术的进步将把植物表型组学推向一个新的阶段,为填补该
促生长素的定义功能
中文名称促生长素英文名称growth hormone;GH定 义由垂体前叶分泌的蛋白质激素。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)
促生长素的功能介绍
中文名称促生长素英文名称growth hormone;GH定 义由垂体前叶分泌的蛋白质激素。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)
关于生长素的相关介绍
生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素。 英文简称IAA,国际通用,是 吲哚乙酸(IAA)。4-氯-IAA、5-羟-IAA、 萘乙酸(NAA)、 吲哚丁酸等为类生长素。 1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究[1] ;后来达尔文父子对草
生长素的存在的部位
生长素在低等和高等植物中普遍存在。生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。用胚芽鞘切段证明植物体内的生长素通常只能从植物的形态上端(根尖分生区或芽)向下端(茎)运输,而不能相反
生长素的应用领域
促进生长 生长素(IAA)对营养器官纵向生长有明显的促进作用。如芽、茎、根三种器官,随着浓度升高,器官伸长递增至最大值,此时生长素浓度为最适浓度,超过最适浓度,器官的伸长受到抑制。不同器官的最适浓度不同,茎端最高,芽次之,根最低。由次可知,根对IAA(生长素)最敏感,极低的浓度就可促进根生长,
生长素的发现与研究
C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的
活性传感器监控植物灌溉的最佳时机
图1. 灌溉的传感器信号技术、数据传递和远程控制示意图。当今全世界淡水资源的大约80%被用于人工灌溉,在世界人口不断增长、气候恶化以及农田日趋盐碱化的时代,如何通过引入人工智能传感系统来有效降低水的消耗?本文介绍了这样一种方案。根据专家们的估计,为了能够在2025年养活日益增长
植物温室控制系统之叶面湿度传感器
温室大棚在我国的种植业中十分常见,但是智能控制系统的应用却不是很普遍,最重 要的原因是设备价格昂贵。为此低成本的植物温室自动控制系统的研制应用是十分有必要的。该类系统可以喂植物的生长提供所需要的最佳温湿度,光照度以及二氧 化碳的含量等条件。最适合对我国现有中、低档普通温室进行“智能化”改造,符合农民
《自然》:调控植物生长的“秘密通道”
生长素是植物中最早被发现也是最重要的激素,精准控制了一系列复杂的植物发育过程。正如“月满则亏,水满则溢”,生长素调控植物生长发育同样遵循类似的规律。 近日,福建农林大学海峡联合研究院园艺中心教授徐通达(原中国科学院分子植物卓越创新中心/上海植物逆境生物学研究中心研究员)课题组在模式植物拟南芥
吲哚3乙酸的生理作用的两重性
较低浓度促进生长,较高浓度抑制生长。植物不同的器官对生长素最适浓度的要求是不同的。根的最适浓度约为10-10mol/L,芽的最适浓度约为10-8mol/L,茎的最浓度约为10-5mol/L。在生产上常常用生长素的类似物(如萘乙酸、2,4-D等)来调节植物的生长如生产豆芽菜时就是用适宜茎生长的浓度来处
生长素生理作用的两重性
较低浓度促进生长,较高浓度抑制生长。植物不同的器官对生长素最适浓度的要求是不同的。根的最适浓度约为10E-10mol/L,芽的最适浓度约为10E-8mol/L,茎的最浓度约为10E-5mol/L。在生产上常常用生长素的类似物(如萘乙酸、2,4-D等)来调节植物的生长如生产豆芽菜时就是用适宜茎生长
高浓度生长素和脱落酸之间的协同作用
固着生长的植物,需要随时响应外界环境变化来协调控制其自身生长和发育,完成完整的生命周期。通常,植物在适宜的环境条件下,抑制胁迫反应促进生长发育;植物在逆境胁迫下,则减缓生长并激活胁迫反应。正是通过平衡生长和抗逆,植物才得以应对复杂多变的环境。植物激素生长素参与了植物体众多的生长发育过程。人们很早
简述吲哚3乙酸的重要作用
植物生长素。植物体内普遍存在的天然生长素是吲哚乙酸。吲哚乙酸对植物抽枝或芽、苗等的顶部芽端形成有促进作用。其前体是色氨酸。 吲哚乙酸就是植物生长素 生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素
Cell-:我国研究团队发现植物激素信号转导机制
水稻在种植过程中,经常因为天气等外部因素发生倒伏,严重影响产量甚至可能造成绝收。这一不利情况能否避免?11月19日,记者从福建农林大学获悉,该校研究团队在全球率先发现了生长素的胞外新受体,调控植物生长发育的分子机制,攻克了“植物细胞如何直接感知胞外生长素信号”这一科学难题。此举有望通过减弱生长素
植物激素的特点
五大类植物激素分为生长素,赤霉素,细胞分裂素,脱落酸和乙烯,其作用机理都是能促进细胞生长,具有以下特点:植物生长素与动物生长素完全不同。土壤中的某些微生物也可以分泌植物激素,影响植物生长,还有就是生长素作用尤为诱导植物体内营养物质向生长素浓度高处运输,以达到促进生长目的。
生长素的存在形式和部位
生长素在低等和高等植物中普遍存在。生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。用胚芽鞘切段证明植物体内的生长素通常只能从植物的形态上端(根尖分生区或芽)向下端(茎)运输,而不能相反
PNAS:找到生长素作用的玄机
报道:植物的叶片形状千变万化,有披针形、矛形、肾形、菱形、箭头形、卵形、圆形、勺形、心形、泪珠形、镰刀形等等。这些形状的生成取决于植物生长素的分配,而生长素决定着植物细胞分裂和伸长的速度。 为何一个简单的分子能够塑造如此复杂多变的形状呢?因为生长素能与大量控制基因表达的蛋白相互作用,施加自
生长素的类似物介绍
吲哚乙酸可以人工合成。生产上使用的是人工合成的类似生长素的物质如吲哚丙酸、吲哚丁酸、萘乙酸、2,4-D、4-碘苯氧乙酸等,可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。愈伤组织容易生根;反之容易生芽。