漫谈分子诊断技术50年(二)

二、核酸序列测定 测序反应是直接获得核酸序列信息的唯一技术手段,是分子诊断技术的一项重要分支。虽然分子杂交、分子构象变异或定量PCR技术在近几年已得到了长足的发展,但其对于核酸的鉴定都仅仅停留在间接推断的假设上,因此对基于特定基因序列检测的分子诊断,核酸测序仍是技术上的金标准。 (一)第1代测序 1975年Sanger与Coulson发表了使用加减法进行DNA序列测定的方法,随后Maxam在1977年提出了化学修饰降解法的模型,为核酸测序时代的来临拉开了序幕。 Sanger等[12]于同年提出的末端终止法(Sanger测序法)利用2'与3'不含羟基的双脱氧核苷三磷酸(ddNTP)进行测序引物延伸反应,ddNTP在DNA合成反应中不能形成磷酸二酯键,DNA合成反应便会终止。如果分别在4个独立的DNA合成反应体系中加入经核素标记的特定ddNTP,则可在合成反应后对产物进行聚丙烯酰胺凝胶电泳(polyacr......阅读全文

漫谈分子诊断技术50年(二)

  二、核酸序列测定  测序反应是直接获得核酸序列信息的唯一技术手段,是分子诊断技术的一项重要分支。虽然分子杂交、分子构象变异或定量PCR技术在近几年已得到了长足的发展,但其对于核酸的鉴定都仅仅停留在间接推断的假设上,因此对基于特定基因序列检测的分子诊断,核酸测序仍是技术上的金标准。  (一)第1代

漫谈分子诊断常用技术沿革

一、基于分子杂交的分子诊断技术  上世纪60年代至80年代是分子杂交技术发展最为迅猛的20年,由于当时尚无法对样本中靶基因进行人为扩增,人们只能通过已知基因序列的探针对靶序列进行捕获检测。其中液相和固相杂交基础理论、探针固定包被技术与cDNA探针人工合成的出现,为基于分子杂交的体外诊断方法进行了最初

漫谈分子诊断技术50年(一)

一、基于分子杂交的分子诊断技术  上世纪60年代至80年代是分子杂交技术发展最为迅猛的20年,由于当时尚无法对样本中靶基因进行人为扩增,人们只能通过已知基因序列的探针对靶序列进行捕获检测。其中液相和固相杂交基础理论、探针固定包被技术与cDNA探针人工合成的出现,为基于分子杂交的体外诊断方法进行了最初

分子诊断常用技术(二)

( 五) 生物芯片1991 年Affymetrix 公司的Fordor利用其所研发的光蚀刻技术制备了首个以玻片为载体的微阵列,标志着生物芯片正式成为可实际应用的分子生物学技术。时至今日,芯片技术已经得到了长足的发展,如果按结构对其进行分类,基本可分为基于微阵列( microarray) 的杂交芯片与

CRISPR分子诊断技术(二)

6    Sherlock和Mammoth两家公司的技术并非横空出世,而是源于张锋和Doudna两家实验室于2015-2018年期间在知名期刊上发表的一系列科研成果。这场学术上的比拼犹如两个武林高手过招,精彩纷呈,让人目不暇接。两个团队互相竞争,也互相学习,开拓了CRISPR分子诊断这一全新

盘点:分子诊断常用技术(二)

( 五 ) 生物芯片1991年Affymetrix公司的Fordor利用其所研发的光蚀刻技术制备了首个以玻片为载体的微阵列,标志着生物芯片正式成为可实际应用的分子生物学技术。时至今日,芯片技术已经得到了长足的发展,如果按结构对其进行分类,基本可分为基于微阵列( microarray) 的杂交芯片

漫谈全自动化的分子诊断系统

此次疫情,新型冠状病毒的检测是一大难点,样本进结果出的全自动分子诊断系统备受瞩目,汤博士梳理了国外比较知名的6款产品,供各位参考。我们也欣喜的看到此次疫情很多国产分子诊断的厂家也非常的积极,发布了一些非常亮眼的全自动化的分子诊断系统,以后撰文再叙。基于核酸扩增的分子诊断是通过引物介导特异性扩增目的基

一文读懂分子诊断常用技术(二)

二核酸序列测定测序反应是直接获得核酸序列信息的唯一技术手段,是分子诊断技术的一项重要分支。虽然分子杂交、分子构象变异或定量PCR技术在近几年已得到了长足的发展,但其对于核酸的鉴定都仅仅停留在间接推断的假设上,因此对基于特定基因序列检测的分子诊断,核酸测序仍是技术上的金标准。(一)第1代测序1975年

分子诊断技术、PCR技术、基因测序技术的区别、原理(二)

  二、核酸序列测定  测序反应是直接获得核酸序列信息的唯一技术手段,是分子诊断技术的一项重要分支。虽然分子杂交、分子构象变异或定量PCR技术在近几年已得到了长足的发展,但其对于核酸的鉴定都仅仅停留在间接推断的假设上,因此对基于特定基因序列检测的分子诊断,核酸测序仍是技术上的金标准。  (一)第1代

漫谈半导体工艺节点(二)

  可能的选择  短期内,芯片制造商们明确地会在FinFet和二维的FD-SOI技术上将节点推进到10nm。到了7nm之后,沟道上的的“门”就会上去控制,这就亟待一种全新的晶体管架构。  7nm上的一个领先竞争者就是高电子迁移率的FinFet,也就是在沟道上使用III-V 材料的FinFet

漫谈基于微流控的全自动化分子诊断仪器

在体外诊断中,虽然分子诊断技术优势很明显,但是由于其步骤繁琐,过程费时,需要专业人员操作,而且临床分子诊断实验室的搭建成本一般较高,所以分子诊断也价格昂贵。与此同时,由于分子诊断中样本预处理过程复杂,往往还需要精确的温度循环控制,导至了传统的机械手方式一直不能很好的把整个流程自动化。而且,由于分子诊

样本进结果出——漫谈全自动化的分子诊断系统

基于核酸扩增的分子诊断是通过引物介导特异性扩增目的基因,以检测内源性(遗传或变异)或外源性(病原体)目的基因的存在与否,进而对疾病的诊断和治疗提供信息和决策依据。其主要的应用场景有传染病的诊断,血筛,肿瘤早期辅助诊断,肿瘤的分子分型,遗传病的诊断,产前诊断,组织分型等。 虽然分子诊断技术优势很明显,

分子生物学实验诊断技术(二)

(三)Northern blot用于RNA分析,电泳条件与转膜方法与Southern blot不同外,RNA不必变性与中和,电泳时加电醛防止RNA发夹结构形成。其它步骤相同。为了防止RNase水解需分析的mRNA,尽可能将器皿在160-180℃干热灭菌8小时以上,也可加0.1%焦碳酸二乙酯(DEPC

漫谈热脱附技术(二)——研究进展与应用案例

       热脱附技术是指在真空条件下或通入载气时,通过直接或间接热交换,将土壤中的有机污染物加热到足够的温度,以使有机污染物从污染介质上得以挥发或分离,进入气体处理系统的过程。       热脱附技术在国外始于七十年代,广泛应用于工程实践,技术较为成熟。在1982-2004年期间,约有70 个美

-漫谈个性化诊断与治疗

  2013年9月底,致力于癌症个性化诊断与治疗的Foundation Medicine公司在美国纳斯达克交易所上市。公司提供的是癌症全基因组测序服务,医生能够参照测序结果为患者提供针对性的治疗方案。史蒂夫•乔布斯曾使用过这项技术,使得该公司名声大噪,可惜的是,这项技术终究还是不够成熟,未能挽救

分子杂交技术(二)

四、核酸探针的标记和检测  分子杂交是核酸链间碱基配对规则的一种结合方式,是核酸的重要理化特性。利用分子杂交这一特性来对特定核酸序列进行检测,必须将杂交链中的一条用某种可以检测的分子进行标记,这条链就称为核酸探针。因此,核酸探针的制备是分子杂交技术的关键。最早采用的也是目前最常用的核酸探针标记方法是

分子杂交技术(二)

四、核酸探针的标记和检测  分子杂交是核酸链间碱基配对规则的一种结合方式,是核酸的重要理化特性。利用分子杂交这一特性来对特定核酸序列进行检测,必须将杂交链中的一条用某种可以检测的分子进行标记,这条链就称为核酸探针。因此,核酸探针的制备是分子杂交技术的关键。最早采用的也是目前最常用的核酸探针标记方法是

分子诊断常用技术(三)

二、核酸序列测定测序反应是直接获得核酸序列信息的唯一技术手段,是分子诊断技术的一项重要分支。虽然分子杂交、分子构象变异或定量PCR 技术在近几年已得到了长足的发展,但其对于核酸的鉴定都仅仅停留在间接推断的假设上,因此对基于特定基因序列检测的分子诊断,核酸测序仍是技术上的金标准。( 一) 第1 代测序

CRISPR分子诊断技术(一)

本篇为“连环画”系列中的第二篇。“连环画”中的每一篇都会介绍一个最新生物医药技术或趋势。以图画为主,文字为辅。虽然无法做到系统全面,但希望能给读者带来一些启发。每篇文章只代表作者个人的观点或解读,与礼来亚洲基金的投资决定无关。1    脊椎动物的免疫系统分为先天免疫(或非特异性免疫),和获得性免疫(

CRISPR分子诊断技术(五)

25   DETECTR达到了aM水平的灵敏度和≤7个碱基的特异性。例如,它能准确地检测出受试者携带的是哪种亚型的HPV。图片来源:参考资料2和1026   在同期Science论文中,张锋团队从三个方面着手完善SHERLOCK:多重化、定量化和去荧光。先说多重化:他们挑选了来自两个不同菌株的Cas

分子诊断技术大盘点

分子诊断技术盘点分子诊断技术是指以DNA和RNA为诊断材料,用分子生物学技术通过检测基因的存在、缺陷或表达异常,从而对人体状态和疾病作出诊断的技术。分子诊断技术为疾病的预测、诊断、预防、治疗和转归提供了信息和决策依据,已广泛应用于传染病的诊断、流行病的调查、食品卫生检查、肿瘤和遗传病的早期诊断及法医

CRISPR分子诊断技术(三)

13    或许是因为LbuC2c2的特异性和非特异性剪切活性远远高于LshC2c2的相应活性, Doudna团队意识到LbuC2c2可以被用来构建高特异性、高灵敏度的RNA检测方法。若想检测出某一特定序列的RNA分子,先将与其互补的crRNA和LbuC2c2蛋白组装,再加上一些报告RNA分

CRISPR分子诊断技术(四)

19    由于其高灵敏度和特异性,CRISPR诊断技术或CRISPR-Dx可以有很多用途:病毒检测和病毒亚型区分,病菌识别和耐药性基因确认,即时检测(POCT), 患者基因分型,以及癌症突变分析和液体活检。这篇论文也初步展示了CRISPR-Dx在这些方面的应用前景。图片来源:参考资料320   比

CRISPR分子诊断技术(六)

34    不是所有的塞卡病毒都一样。2017年9月, 中科院遗传所的许执恒团队和军事医学科学院的秦成峰团队在Science上报导,prM蛋白的一个突变(S139N)增加了塞卡病毒的传染性,并引起更严重的小头症和更高的致死率。在该论文发表后一周内,Sabeti团队和张锋团队就设计、开发出几个能区分出

CRISPR分子诊断技术(七)

39   加上Cas9,它们为分子诊断和基因编辑提供了多样灵活的工具。图片来源:参考资料240    CRISPR分子诊断技术并不是只有Doudna和张锋两家在开发。2019年3月,在Keck Graduate Institute任职的Kiana Aran博士与合作者在Nature Biomedic

分子诊断常用技术(一)

分子诊断技术即是利用分子生物学方法对人类及病原体的各类遗传物质进行检测,以帮助对疾病进行诊断。以技术原理出发对分子诊断技术进行归类与评价,以对目前临床常用技术的沿革进行回顾。1961 年Hall 建立的液相分子杂交法标志着人类掌握分子生物学技术对特定核酸序列进行检测,开启了对疾病分子诊断的大门。19

现有分子诊断技术大盘点

感染性疾病如今出现了很多新的变化,旧的疾病有了新的特点,也出现了诸如埃博拉病毒之类新的疾病。传统的病原学检测以分离、培养、染色、生物化学鉴定为主,但是有操作复杂、检测周期长、干扰因素多、敏感性与特异性有限等缺点。虽然自动化技术缩短了检测时间,但并没有解决根本性问题,临床应用中急需一种新的,更有效的诊

盘点:分子诊断常用技术(一)

分子诊断技术即是利用分子生物学方法对人类及病原体的各类遗传物质进行检测,以帮助对疾病进行诊断。以技术原理出发对分子诊断技术进行归类与评价,以对目前临床常用技术的沿革进行回顾。1961年Hall 建立的液相分子杂交法标志着人类掌握分子生物学技术对特定核酸序列进行检测,开启了对疾病分子诊断的大门。1

漫谈酶标仪

名:酶标仪字:一台变相光电比色计或分光光度计号:数据收割机一.简介原理        酶标仪实际上就是一台变相光电比色计或分光光度计,其基本工作原理与主要结构和光电比色计基本相同。光源灯发出的光波经过滤光片或单色器变成一束单色光,进入塑料微孔极中的待测标本.该单色光一部分被标本吸收,另一部分则透过标