激光器光学共振腔简介
通常是由具有一定几何形状和光学反射特性的两块反射镜按特定的方式组合而成。作用为:①提供光学反馈能力,使受激辐射光子在腔内多次往返以形成相干的持续振荡。②对腔内往返振荡光束的方向和频率进行限制,以保证输出激光具有一定的定向性和单色性。共振腔作用①,是由通常组成腔的两个反射镜的几何形状(反射面曲率半径)和相对组合方式所决定;而作用②,则是由给定共振腔型对腔内不同行进方向和不同频率的光,具有不同的选择性损耗特性所决定的。......阅读全文
激光器光学共振腔简介
通常是由具有一定几何形状和光学反射特性的两块反射镜按特定的方式组合而成。作用为:①提供光学反馈能力,使受激辐射光子在腔内多次往返以形成相干的持续振荡。②对腔内往返振荡光束的方向和频率进行限制,以保证输出激光具有一定的定向性和单色性。共振腔作用①,是由通常组成腔的两个反射镜的几何形状(反射面曲率半
介电常数测试仪空洞共振腔仪器简介
仪器简介: 日本AET微波(高频)介电常数测试仪, 利用微波技术结合高Q腔以及3D电磁场模拟技术,采用德国CST公司的3D电磁类比软件MW-StudioTM,测量材料的高频介电常数,此方法保证了介电常数测量结果的精确性。 AET公司开发了二种共振腔:空洞共振腔和开放式同轴
介电常数测试仪空洞共振腔仪器简介
仪器简介:日本AET微波(高频)介电常数测试仪, 利用微波技术结合高Q腔以及3D电磁场模拟技术,采用德国CST公司的3D电磁类比软件MW-StudioTM,测量材料的高频介电常数,此方法保证了介电常数测量结果的精确性。AET公司开发了二种共振腔:空洞共振腔和开放式同轴共振腔用于测试环境腔.
介电常数测试仪诱电体共振腔仪器简介
介电常数测试仪---诱电体共振腔品牌:AET型号: 诱电体共振腔产地:日本 仪器简介:日本AET微波(高频)介电常数测试仪, 利用微波技术结合高Q腔以及3D电磁场模拟技术,采用德国CST公司的3D电磁类比软件MW-StudioTM,测量材料的高频介电常数,此方法保证了介电常数测量结果的精确性。AET
介电常数测试仪同轴共振腔
日本AET微波(高频)介电常数测试仪, 利用微波技术结合高Q腔以及3D电磁场模拟技术,采用德国CST公司的3D电磁类比软件MW-StudioTM,测量材料的高频介电常数,此方法保证了介电常数测量结果的精确性。AET公司开发了二种共振腔:空洞共振腔和开放式同轴共振腔用于测试环境腔.
介电常数测试仪同轴共振腔
日本AET微波(高频)介电常数测试仪, 利用微波技术结合高Q腔以及3D电磁场模拟技术,采用德国CST公司的3D电磁类比软件MW-StudioTM,测量材料的高频介电常数,此方法保证了介电常数测量结果的精确性。AET公司开发了二种共振腔:空洞共振腔和开放式同轴共振腔用于测试环境腔.
光学谐振腔的主要种类
光学谐振腔的种类按组成谐振腔的两块反射镜的形状及它们的相对位置,可将光学谐振腔分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。对称凹面腔中两块反射球面镜的曲率半径相同。如果反射镜焦点都位于腔的中点
光学谐振腔的具体种类
光学谐振腔的种类按组成谐振腔的两块反射镜的形状及它们的相对位置,可将光学谐振腔分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。对称凹面腔中两块反射球面镜的曲率半径相同。如果反射镜焦点都位于腔的中点
激光器的原理介绍
除自由电子激光器外,各种激光器的基本工作原理均相同。产生激光的必不可少的条件是粒子数反转和增益大于损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励
表面等离子共振SPR光学原理
我们在前面提到光在棱镜与金属膜表面上发生全反射现象时,会形成消逝波进入到光疏介质中,而在介质(假设为金属介质)中又存在一定的等离子波。当两波相遇时可能会发生共振。当消逝波与表面等离子波发生共振时,检测到的反射光强会大幅度地减弱。能量从光子转移到表面等离子,入射光的大部分能量被表面等离子波吸收,使
介电常数测试仪诱电体共振腔
主要特点:高介电,低介电损耗材料量测。
原肠腔的简介
植物半球的细胞开始内陷,周围的一些植物半球细胞被卷入囊胚腔中,逐渐形成原肠腔,发育成原肠胚,并逐渐发育成三个胚层。
光参量振荡器的基本原理
光学参量振荡器(OPO)作为一种宽调谐相干光源,克服了固体和气体激光器输出波长的局限性,能够产生从紫外到远红外激光。一束频率和强度比较高的激光束与一束频率及强度较低得光束同时通过非线性介质,结果是信号波获得放大,同时还产生出第三束光波(称为空闲波)。空闲波得频率正好等于甭浦光波得频率。这个非线性光学
光参量振荡器的基本原理
光学参量振荡器(OPO)作为一种宽调谐相干光源,克服了固体和气体激光器输出波长的局限性,能够产生从紫外到远红外激光。一束频率和强度比较高的激光束与一束频率及强度较低得光束同时通过非线性介质,结果是信号波获得放大,同时还产生出第三束光波(称为空闲波)。空闲波得频率正好等于甭浦光波得频率。这个非线性光学
导激光器简介
固体、液体、气体、半导体等工作物质都可以做成波导激光器,其中较为成熟的是CO₂波导激光器。CO₂激光器的波导管是内径很细(约1nm)、内表面很光滑的空心导管,可以是圆形或方形,通常用氧化铍(BeO)陶瓷做成。波导管只允许低阶模通过,对高阶模的损耗很大,故输出激光的光束质量很好。CO₂波导激光器的工作
激光器的种类用途及原理介绍
种类用途 激光器发出的光质量纯净、光谱稳定可以在很多方面被应用。 红宝石激光:最初的激光器是红宝石被明亮的闪光灯泡所激励,所产生的激光是“脉冲激光”,而非连续稳定的光束。这种激光器产生的光速质量和我们使用的激光二极管产生的激光有本质的区别。这种仅仅持续几纳秒的强光发射非常适合捕捉容易移动的物
介电常数测试仪空洞共振腔主要特点
主要特点: 空洞共振腔(Cavity Resonator ),适用于CCL/印刷线路板,薄膜等非破坏性低介电损耗材料量测。
介电常数测试仪空洞共振腔应用领域
应用领域: 高速数字/微波电路用基底材料 ;滤波器和介电天线用低损耗电介质 ;化学制品; 薄膜与新材料;半导体材料;电子材料(包括CCL和PCB)陶瓷材料;纳米材料;光电材料等
介电常数测试仪同轴共振腔应用领域
应用领域: 高速数字/微波电路用基底材料 ;滤波器和介电天线用低损耗电介质 ;化学制品; 薄膜与新材料;半导体材料;电子材料(包括CCL和PCB)陶瓷材料;纳米材料;光电材料等
介电常数测试仪同轴共振腔主要特点
主要特点:同轴共振腔适用于不同形状样品:包括薄膜样品的非破坏性测量,使用简易的逐步操作,内置的反馈振荡器电路可实现精确的量测。
介电常数测试仪空洞共振腔主要特点
主要特点:空洞共振腔(Cavity Resonator ),适用于CCL/印刷线路板,薄膜等非破坏性低介电损耗材料量测。
介电常数测试仪空洞共振腔应用领域
应用领域: 高速数字/微波电路用基底材料 ;滤波器和介电天线用低损耗电介质 ;化学制品; 薄膜与新材料;半导体材料;电子材料(包括CCL和PCB) 陶瓷材料;纳米材料;光电材料等
介电常数测试仪同轴共振腔技术参数
技术参数:可测试频率范围: 800-18GHz介电常数Epsilon:1-15, 准确度: ±1%,介电损耗tangent delta:0.1-0.001, 准确度:±5%共有三种同轴共振腔,每个腔可测五个频点:0.8/2.45/4.2/5.8/7.6GHzor 1/3/5/7/9GHz
介电常数测试仪空洞共振腔技术参数
技术参数:可测试频率范围: 1G-18GHz介电常数Epsilon:1-30, 准确度: ±1%,介电损耗tangent delta:0.05-0.0001, 准确度:±5%拥有多种腔体,每个腔可测一个频点:
介电常数测试仪同轴共振腔技术参数
技术参数:可测试频率范围: 800-18GHz介电常数Epsilon:1-15, 准确度: ±1%,介电损耗tangent delta:0.1-0.001, 准确度:±5%共有三种同轴共振腔,每个腔可测五个频点:0.8/2.45/4.2/5.8/7.6GHzor 1/3/5/7/9GHz
光学随机共振——强大的弱白光成像
中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室研究员刘红军课题组在光学随机共振弱光图像重构方面取得新进展,于11月4日在美国物理学会(APS)旗下期刊Physical Review Applied 上以White-light image reconstruction via s
上海理工大学实现高精度全光纤化重频锁定
上海理工大学曾和平课题组通过共振增强光学非线性实现对有源增益光纤折射率的精密调控,实现了全保偏光纤激光器的重频锁定。相关研究成果日前发表于《光学学报》。 随着超快激光向全光纤、全保偏、小型化发展,使得机载和星载逐步成为可能。因此,研究一种更高锁定精度、全光纤化的重频锁定方法显得尤为重要。 研
光学镀膜简介
光学镀膜由薄膜层组合制作而成,它产生干扰效应来提高光学系统内的透射率或反射性能。光学镀膜的性能取决于层数、个别层的厚度和不同的层接口折射率。用于精密光学的zui常见镀膜类型:增透膜(AR)、高反射(镜)膜、 分光镜膜和过滤光片膜。增透膜包括在高折射率的光学中并用于zui大化光
研制出高精细度球形光学参考腔
近日,中科院国家授时中心主任张首刚研究员领导的量子频标研究团队在空间窄线宽激光器的自主化研制方面取得重要进展。相关论文已在《物理学报》发表。 高精细度光学参考腔是研制窄线宽激光器的关键,也是我国空间站科学应用平台亟须解决的关键技术之一。张首刚研究团队在国家重大科研仪器设备研制专项和国家自然科学
光学谐振腔的工作原理和应用介绍
光波在其中来回反射从而提供光能反馈的空腔。激光器的必要组成部分,通常由两块与工作介质轴线垂直的平面或凹球面反射镜构成。工作介质实现了粒子数反转后就能产生光放大。谐振腔的作用是选择频率一定、方向一致的光作最优先的放大,而把其他频率和方向的光加以抑制。如图,凡不沿谐振腔轴线运动的光子均很快逸出腔外,与工