Antpedia LOGO WIKI资讯

上海有机所在可见光介导的能量转移去芳构化方面获进展

可见光是一种清洁环保的可再生资源。可见光催化反应因其迥异于热化学转化的反应行为,近年来在有机合成中得到了广泛的应用。值得注意的是,将可见光诱导的能量转移过程与去芳构化反应相结合,可在温和的反应条件下高效地构建复杂三维分子骨架。中国科学院上海有机化学研究所金属有机化学国家重点实验室研究员游书力团队一直致力于发展可见光介导的去芳构化反应。在前期工作中该团队发现,在可见光的照射和光敏剂存在条件下吲哚衍生物可通过能量转移机制激发至三重态,并与分子内烯烃、炔烃发生[2+2]环加成反应,构建含环丁烷或环丁烯单元的吲哚啉衍生物(J. Am. Chem. Soc. 2019, 141, 2636, CCS Chem. 2020, 2, 652);与N-甲氧基肟醚发生[2+2]环加成反应或1,5-氢原子转移反应,构建吲哚啉并氮杂环丁烷和indolizidine类衍生物(ACS Catal. 2020, 10, 12618);与另一芳香环发生双......阅读全文

游书力团队合成环丁烷稠合的四环吲哚螺环

  近日,中国科学院上海有机所游书力团队开发了一种可见光促进的吲哚衍生物分子内[2+2]环加成方法,可以极好的收率和立体选择性得到环丁烷稠合的四环吲哚螺环(Scheme 1,底部)。该成果近期发表在J. Am. Chem. Soc.上(DOI: 10.1021/jacs.8b12965)。  多环吲

上海有机所在可见光介导的能量转移去芳构化方面获进展

  可见光是一种清洁环保的可再生资源。可见光催化反应因其迥异于热化学转化的反应行为,近年来在有机合成中得到了广泛的应用。值得注意的是,将可见光诱导的能量转移过程与去芳构化反应相结合,可在温和的反应条件下高效地构建复杂三维分子骨架。中国科学院上海有机化学研究所金属有机化学国家重点实验室研究员游书力团队

微波有机合成

自从1986年起,有人第一次在一台简单的家用微波炉中做了一次化学合成反应,从此微波有机合成(MAOS)就在现代化学合成的发展中逐渐变得流行起来。在过去的10年中,微波催化已经成功地用于加速和改进一些著名的有机合成反应。很多具有多种模式或单一模式的特殊设备或技术应运而生,来满足化学家们对精细反应的控制

微波有机合成

自从1986年起,有人第一次在一台简单的家用微波炉中做了一次化学合成反应,从此微波有机合成(MAOS)就在现代化学合成的发展中逐渐变得流行起来。在过去的10年中,微波催化已经成功地用于加速和改进一些著名的有机合成反应。很多具有多种模式或单一模式的特殊设备或技术应运而生,来满足化学家们对精细反应的控制

有机合成简介

    有机合成是指利用化学方法将单质、简单的无机物或简单的有机物制成比较复杂的有机物的过程。例如从氢气和二氧化碳制成甲醇;从乙炔制成氯乙烯,再经聚合而得聚氯乙烯树脂;从苯酚经一系列反应制得己二酸和己二胺,二者再缩合成聚酰胺66纤维。目前大多数的有机物如树脂、橡晈、纤维、染料、药物、燃料、香料等都可

俞书宏:过渡金属盐催化有机小分子碳化的合成新途径

  从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。  碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、

俞书宏:过渡金属盐催化有机小分子碳化的合成新途径

  从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。  碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、

自然基金资助成果:手性分子精准合成领域取得新突破

  自然基金资助成果:手性分子精准合成领域取得新突破  在国家自然科学基金(批准号:21821002、91856201)的资助下,中国科学院上海有机化学研究所游书力团队实现了含有Z-烯烃的手性化合物的不对称催化合成。研究成果以“铱催化Z式保留不对称烯丙基取代反应(Iridium-catalyzed 

合成酶的催化反应机制和过程

合成酶:将伴随三磷酸腺苷(ATP)的分解而催化合成反应的酶称为合成酶。这个过程中,ATP分解为ADP与正磷酸或AMP与焦磷酸。催化反应的机制如下:A + B + ATP ←→ A·B + ADP + Pi 或A + B + ATP ←→ A·B + AMP + PPi比如,氨酰tRNA合成酶就属于此

福建物质结构所可见光催化反应研究取得进展

  环境和能源问题是当务之急,利用太阳光驱动的光催化反应为解决环境和能源问题提供了新思路,而如何提高光吸收范围以及促进光生载流子的分离一直以来都是研究的热点课题。众所周知,半导体催化剂在光照下,如果催化剂吸收的光子能量等于或者大于其禁带宽度,产生光生电子和空穴,光生电子具有很强的还原能力,空穴具有很